首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of the pyrimidine moiety and the uronic acid moiety of the polyoxins and the formation of unnatural polyoxins has been studied in Streptomyces cacaoi. Experimental evidence is provided for the biosynthesis of thymine via a pathway that is independent of thymidylate synthetase. This new thymine pathway is based on two experimental approaches. First, two known inhibitors of DNA synthesis (1-formylisoquinoline thiosemicarbazide and 5-fluoro-2′-deoxyuridine), when added to polyoxin-producing cultures of S. cacaoi, inhibit the synthesis of TMP from exogenously supplied uracil but do not inhibit the synthesis of the thymine or hydroxymethyluracil in the polyoxin complex. Second, exogenously supplied thymine and hydroxymethyluracil are taken up by S. cacaoi but are not incorporated into the thymine or hydroxymethyluracil of the polyoxin complex. The thymine is incorporated into the DNA. The uracil in polyoxin L could be the parent pyrimidine chromophore with C-1 additions occurring at carbon-5 to form thymine and hydroxymethyluracil. Carbon-3 of serine but not the methyl group of methionine is a one-carbon source for the formation of the thymine and hydroxymethyluracil in the polyoxin complex.S. cacaoi can synthesize unnatural polyoxins, as evidenced by the incorporation of 5-fluoro, 5-bromo, and 6-azauracil into the polyoxins; 5-iodo-, 2-thio-, or 4-thiouracil is not a substrate. Two new polyoxin analogs synthesized and characterized when 5-fluorouracil is added to the cultures are 5-fluoropolyoxin L and 5-fluoropolyoxin M. There is a marked change in the molar ratio of the uracil:thymine:hydroxymethyluracil chromophores in the polyoxin complex following the incorporation of 5-fluoro-, 5-bromo-, or 6-azauracil. Apparently, the unnatural polyoxins inhibit the addition of the C-1 unit to carbon-5 of uracil in the polyoxin complex. Polyoxin L and polyoxin C do not inhibit Escherichia coli and Streptococcus faecalis, but 5-fluoropolyoxin L and 5-fluoropolyoxin C inhibit both these organisms. There is little or no difference in the inhibition of the fluorinated and natural polyoxins against leukemia L-1210 cells. The fluoro group on carbon-5 of the uracil ring does not affect the enzyme-inhibition complex with chitin synthetase since the inhibition constant of fluoropolyoxins L is the same as has been reported for polyoxins A, D, and L.The 14C-labeling pattern in the 5′-amino-5′-deoxy-d-allofuranosyluronic acid moiety of the polyoxins from 14C-labeled glucose, allose, and glycerol suggests that the formation of this unique C-6 uronic acid in the polyoxins does not proceed via the direct oxidation of either d-glucose or d-allose to the -onic or -uronic acids. Glucose is converted to two three-carbon trioses, followed by either (i) the oxidation of one of the trioses to a threecarbon acid and subsequent condensation with another three-carbon sugar to form the C-6 uronic or (ii) an 80:20 equilibrium of the two trioses followed by condensation to a hexose which is then oxidized to the C-6 uronic acid.  相似文献   

2.
The Biogenesis of Ethylene in Penicillium Digitatum   总被引:5,自引:4,他引:1  
The origin of the ethylene carbon skeleton in Penicillium digitatum appears to be intimately associated with the Krebs cycle acids, particularly the middle carbon atoms of dicarboxylic acids. Among the other compounds studied, certain carbon atoms of beta-alanine, propionic acid, and methionine can be incorporated into the ethylene carbon skeleton presumably by way of an indirect route via the Krebs cycle acids. Carbon atoms of acrylic acid, particularly C-2, were also found to be incorporated into the ethylene skeleton. Inhibition of ethylene but not respiratory CO(2) formation in the mold by cis-3-chloroacrylic acid at 1 x 10(-3)m pointed to the possibility that acrylic acid may be related to the precursor for ethylene.  相似文献   

3.
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.Abbreviations EDTA ethylenediaminetetraacetic acid - HMBA 2-hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - HSS high speed supernatant - KMBA 2-oxo-4-methylthiobutyric acid - PCS phase combining system  相似文献   

4.
《Phytochemistry》1987,26(5):1409-1411
The biosynthesis of acerogenin A was studied by feeding various 14C-labelled compounds to the young shoots of Acer nikoense. Phenylalanine and cinnamic acid were the best precursors. C-2 of both acetate and malonic acid were efficiently incorporated into acerogenin A, but C-1 of acetate and the methyl carbon of methionine were incorporated very poorly. These results show that acerogenin A is probably biosynthesized via (−)-centrolobol derived from two p-coumarate residues and one malonate.  相似文献   

5.
Three new bitter iridoid glycosides having an 8,10,11-oxygen substituted iridoid skeleton with an isovaleryl moiety at C-1, have been isolated from the ether and ethyl acetate soluble fractions of the leaves of Viburnum furcatum. Two of them had a glucose moiety at C-11 of the iridoid skeleton and a p-coumaroyl group linked to C-6 of the sugar, and they were found to be geometrical isomers about the double bond of the p-coumaroyl2 moiety. The third one was characterized as a alloside of the same aglycone.  相似文献   

6.
The aim of this review is to highlight updated results on the biologically active saponins from Leguminosae-Mimosoideae. Acacic acid-type saponins (AATS), is a class of very complex glycosides possessing a common aglycon unit of the oleanane-type (acacic acid = 3β, 16α, 21β trihydroxy-olean-12-en-28 oic acid), having various oligosaccharide moieties at C-3 and C-28 and an acyl group at C-21. About sixty molecules of this type have been actively explored in recent years from Leguminosae family, from a chemical point of view and some fifty were reported to possess cancer related activities. These include cytotoxic/antitumor, immunomodulatory, antimutagenic, and apoptosis inducing properties and appear to depend on the acylation and esterification by different moieties at C-21 and C-28 of the acacic acid-type aglycone. One can observe that the (6S) configuration of the outer monoterpenyl moiety (MT) seems more potent in mediating high cytotoxicity than its (6R) isomer. Furthermore, the trisaccharide moiety {β-d-Xylopyranosyl-(1→2)-β-d-Fucopyranosyl-(1→6)- N-Acetamido 2-β-d-Glucopyranosyl-} at C-3, the tetrasaccharide moiety {β-d-Glucopyranosyl-(1→3)-[α-L-Arabinofuranosyl-(1→4)]-α-l-Rhamnopyranosyl-(1→2)-β-d-Glucopyranosyl} at C-28 of the aglycone, and the inner MT hydroxylated at its C-9, having a (6S) configuration can be important substituent patterns for the induction of apoptosis of AATS. Because of their interesting cytotoxic/apoptosis inducing activity, some AATS can be useful in the search for new potential antitumor agents from Fabaceae. Furthermore, the sequence 28-O-{Glc-(1→3)-[Araf-(1→4)]-Rha-(1→2)-Glc-Acacic acid}, often encountered in the genera Acacia, Albizia, Archidendron, and Pithecellobium may represent a chemotaxonomic marker of the Mimosoideae subfamily.  相似文献   

7.
R H White  F B Rudolph 《Biochemistry》1979,18(12):2632-2636
Methods are described for the cleavage, extraction, and subsequent gas chromatographic-mass spectrometric analysis of the pyrimidine moiety of thiamin as 2-methyl-4-amino-5-[(ethylthio)methyl]pyrimidine. The methods are of a general nature and can be applied to any system. Using these methods to evaluate the incorporation of 13C-, 15N-, and 2H-labeled glycines into the pyrimidine moiety of thiamin by Escherichia coli, we established that the nitrogen and carbon atoms of glycine are incorporated as a unit into the pyrimidine. 13C- and 15N-labeled glycines are incorporated at greater than 60% but deuterium from [2-(2)H2]glycine was incorporated at only 18%. A detailed analysis of the mass fragmentation pattern of the pyrimidine derivative has established that the glycine nitrogen atom supplies the N-1 of the pyrimidine and that the C-1 and C-2 of the glycine supplies the C-4 and C-6 of the pyrimidine, respectively. This evidence is consistent with the substitution of a C2 unit between the C-5 and C-4 of the 4-aminoimidazole ribonucleotide precursor during the biosynthesis of the pyrimidine moiety of thiamin in E. coli.  相似文献   

8.
A new trinorsesterterpene glycoside was isolated from the ethanol extract of the American fern Woodwardia virginica having a 3-[6-(4,8-dimethyl-nona-1,3,7-trienyl)-4-hydroxy-2,6-dimethyl-cyclohex-1-enyl]-3-hydroxypropionic acid, as the aglycone and a saccharide moiety linked at C-4 to glucoses, xylose or arabinofuranose. The structure was elucidated using extensive spectroscopic analysis (1D and 2D NMR, MS, IR and UV) including determination of absolute stereochemistry by means of the MTPA and PGME derivatives and also by chemical methods.  相似文献   

9.
Chloramphenicol produced by cultures of Streptomyces species 3022a supplemented with sodium [1,2-13C]acetate was labelled with 13C exclusively in the dichloromethine (2.6 +/- 0.1%) and carbonyl (0.59 +/- 0.05% carbon atoms. Satellite signals from 13C-13C coupling between covalently bonded 13C-enriched carbon atoms were too intense to be attributed to random combination of labelled atoms at the average enrichments measured, but their intensity relative to those of the signals for uncoupled 13C atoms indicated that most of the precursor had been incorporated after 13C-13C bond fission. Since [2,3-13c]succinic acid enriched only the carbonyl carbon atom of chloramphenicol, these results suggest that neither acetate nor a Krebs cycle intermediate is a direct precursor of the dichloroacetyl group. Cultures supplemented with [2-3h]-or [2h2]-dichloroacetic acid incorporated negligible amounts of isotope into the antibiotic; on this evidence, the free acid is not an intermediate in chloramphenicol biosynthesis and the acylation step may precede chlorination.  相似文献   

10.
The origin of the skeletal carbons in the lactone ring of 16-membered macrolide antiobiotics has been studied. 13C-labeled antibiotics leucomycin and tylosin, have been obtained from the culture broth of Streptomyces kitasatoensis 66-14-3 and Streptomyces fradiae C-373, respectively in the presence of appropriate 13C-labeled precursors, and 13C NMR spectra of the antibiotics thus obtained have been measured. It was shown that the aglycone of leucomycin A3 is derived from five acetates, one propionate, one butyrate, and an unknown precursor corresponding to two carbons. The formyl carbon which is characteristic of the basic 16-membered macrolides orginates from C-4 butyrate. On the other hand, the aglycone of tylosin is formed from two acetates, five propionates and one butyrate. Butyric acid and ethylmalonic acid are metabolized to propionyl-CoA or methylmolonyl-CoA through a pathway involving methylmalonyl-CoA mutase, and subsequently incorporated into the lactone ring of tylosin.  相似文献   

11.
Saponins from Medicago species are glycosidic compounds with an aglycone moiety formed through the enzymatic cyclization of 2,3-oxidosqualene by the β-amyrin cyclase. All the saponins from Medicago genus possess the triterpenic pentacyclic nucleus belonging to the class of β-amyrin. The so formed β-amyrin skeleton can be further modified by oxidative reactions, mediated by cytochromes belonging to the class of cytochrome P450, to give different saponin compounds, characterized by the presence of hydroxyl or carboxyl groups located in specific positions of the triterpenic skeleton. Based on the position and the oxidation degree of the substituents, it is possible to distinguish two groups of saponins (sapogenins) in Medicago spp: (1) sapogenins possessing an OH group on C-24 (soyasapogenols A, B and E) without any substituent at the C-28 atom, and (2) sapogenins possessing the COOH group at C-28 that are associated with different oxidation degrees (zero, OH, CHO, COOH) at C-23. These results seem to indicate that the oxidation at C-24 and the presence of the COOH group at C-28 are mutually exclusive. The subdivision in the aglycone moiety is reflected also in the sugar moiety, operated by glycosyltranferases, as the saponins of the two groups differ for the position and the nature of the sugar chains. Based on these findings, new considerations on the biosynthesis of saponins in the genus Medicago can be drawn and a biosynthetic scheme is proposed.  相似文献   

12.
For the investigation of rotenone biosynthesis, acetate-2-14C, mevalonic acid-2-14C lactone and methionine-methyl-14C were administered to Derris elliptica plants, respectively, and the distribution of carbon-14 in the labeled rotenone was determined by degradation. When mevalonic acid-2-14C lactone was incorporated into rotenone, the radioactivity was found equally in the carbons at both C-7′ and C-8′, indicating that these carbons are derived from the carbon-2 of mevalonic lactone. In the case of methionine-methyl-14C about 80% of the total radioactivity was found to enter two methoxyl groups. This result demonstrates that methionine is an efficient precursor of the methoxyl group. Furthermore, it is also suggested that methionine may be a precursor of the carbon at C-6.  相似文献   

13.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

14.
Abstract— Glucose metabolism in the superior cervical ganglion for calves has been studied by incubating slices with [1-14C]-, [6-14C]- and [U-14C]-labelled glucose at 37°C and pH 7.4. Glucose utilization and the metabolic partitioning of glucose carbon in products during different incubation periods ranging from 5 to 60 min were determined by isotopic methods.
Separation and identification of labelled compounds have been achieved by anion and cation exchange chromatography as well as by TLC and enzymatic analyses.
From the data obtained a carbon balance could be constructed showing lactate to be the major product of glucose metabolism followed by CO2 and amino acids. Measuring the release of 14CO2 from differently 4C-labelled glucose, the existence of an active pentose phosphate pathway in the ganglion could be demonstrated although this pathway seems to contribute only to a small extent to glucose metabolism. The marked decrease of the C-U: C-6 and the C-U:C-1 ratios in 14CO2 observed in the course of incubation is discussed in terms of a time-dependent change in the rate of synthesis of amino acids which are directly connected with intermediates of the citric acid cycle.  相似文献   

15.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

16.
We studied the incorporation of radioactive glucose into the pyrimidine moiety of thiamin in the eucaryote Candida utilis. Three carbons of glucose were incorporated into the pyrimidine, and the C-2 of glucose into the C-6 of the pyrimidine. We concluded that the C-5, -6, and hydroxymethyl carbon atoms of the pyrimidine in this eucaryote originate from the C-2, -3 and -4 of glucose via ribose.  相似文献   

17.
The conversion of l-[U-(14)C]lysine into carnitine was demonstrated in normal, choline-deficient and lysine-deficient rats. In other experiments in vivo radioactivity from l-[4,5-(3)H]lysine and dl-[6-(14)C]lysine was incorporated into carnitine; however, radioactivity from dl-[1-(14)C]lysine and dl-[2-(14)C]lysine was not incorporated. Administered l-[Me-(14)C]methionine labelled only the 4-N-methyl groups whereas lysine did not label these groups. Therefore lysine must be incorporated into the main carbon chain of carnitine. The methylation of lysine by a methionine source to form 6-N-trimethyl-lysine is postulated as an intermediate step in the biosynthesis of carnitine. Radioactive 4-N-trimethylaminobutyrate (butyrobetaine) was recovered from the urine of lysine-deficient rats injected with [U-(14)C]lysine. This lysine-derived label was incorporated only into the butyrate carbon chain. The specific radioactivity of the trimethylaminobutyrate was 12 times that of carnitine isolated from the urine or carcasses of the same animals. These data further support the idea that the last step in the formation of carnitine from lysine was the hydroxylation of trimethylaminobutyric acid, and are consistent with the following sequence: lysine+methionine --> 6-N-trimethyl-lysine --> --> 4-N-trimethylaminobutyrate --> carnitine.  相似文献   

18.
L H Hurley  C Gairola  N V Das 《Biochemistry》1976,15(17):3760-3769
11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H]tyrosine are consistent with a "meta" or extradiol cleavage of 6,7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both the beta hydrogens of this amino acids are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.  相似文献   

19.
Structural identification of a steroid diglucoside from Carthamus tinctorius whose aglycone is 15α-20β-dihydroxy-Δ4-pregnen-3-one has been completed. We have analyzed the sugar moiety of the glycoside and found it to be cellobiose, β-linked to C-20 of the aglycone.  相似文献   

20.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号