首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane proteins play important roles in cell functions such as neurotransmission, muscle contraction, and hormone secretion, but their structures are mostly undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Electron microscopy-based single particle reconstruction, a computer-aided structure determination method, reconstructs a three-dimensional (3D) structure from projections of monodispersed protein. A large number of particle images are picked up from EM films, aligned and classified to generate two-dimensional (2D) averages, and, using the Euler angle of each 2D average, reconstructed into a 3D structure. This method is challenging due to the necessity for close collaboration between classical biochemistry and innovative information technology, including parallel computing. However, recent progress in electron microscopy, mathematical algorithms, and computational ability has greatly increased the subjects that are considered to be primarily addressable using single particle reconstruction. Membrane proteins are one of these targets to which the single particle reconstruction is successfully applied for understanding of their structures. In this paper, we will introduce recently reconstructed channel-related proteins and discuss the applicability of this technique in understanding molecular structures and their roles in pathology.  相似文献   

2.
The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale.  相似文献   

3.
Electron microscope examination of negatively stained preparations continues to be the method of choice for the diagnosis of virus particles although in some instances an immunological test is necessary. Colloidal gold immunocytochemical probes are becoming increasingly popular for electron microscopy and their suitability for the identification of virus particles is assessed.Virus particles were immunolabelled in situ on plastic/carbon coated electron microscope grids with specific antibody and colloidal gold probes. The labelling obtained was specific, definite and with very little background. The technique is very sensitive, very quick, and since a minimum of preparation is needed it appears to possess considerable potential for virus diagnosis.  相似文献   

4.
The CCR4-NOT complex is a deadenylation complex, which plays a major role for mRNA stability. The complex is conserved from yeast to human and consists of nine proteins NOT1-NOT5, CCR4, CAF1, CAF40 and CAF130. We have successfully isolated the complex using a Protein A tag on NOT1, followed by cross-linking on a glycerol gradient. All components of the complex were identified by mass spectrometry. Electron microscopy of negatively stained particles followed by image reconstruction revealed an L-shaped complex with two arms of similar length. The arms form an accessible cavity, which we think could provide an extensive interface for RNA-deadenylation.  相似文献   

5.
Measuring the quality of three-dimensional (3D) reconstructed biological macromolecules by transmission electron microscopy is still an open problem. In this article, we extend the applicability of the spectral signal-to-noise ratio (SSNR) to the evaluation of 3D volumes reconstructed with any reconstruction algorithm. The basis of the method is to measure the consistency between the data and a corresponding set of reprojections computed for the reconstructed 3D map. The idiosyncrasies of the reconstruction algorithm are taken explicitly into account by performing a noise-only reconstruction. This results in the definition of a 3D SSNR which provides an objective indicator of the quality of the 3D reconstruction. Furthermore, the information to build the SSNR can be used to produce a volumetric SSNR (VSSNR). Our method overcomes the need to divide the data set in two. It also provides a direct measure of the performance of the reconstruction algorithm itself; this latter information is typically not available with the standard resolution methods which are primarily focused on reproducibility alone.  相似文献   

6.
7.
Oligomeric forms of the HC-Pro protein of the tobacco etch potyvirus (TEV) have been analyzed by analytical ultracentrifugation and single-particle electron microscopy combined with three-dimensional (3D) reconstruction. Highly purified HC-Pro protein was obtained from plants infected with TEV by using a modified version of the virus that incorporates a histidine tag at the HC-Pro N terminus (hisHC-Pro). The purified protein retained a high biological activity in solution when tested for aphid transmission. Sedimentation equilibrium showed that the hisHC-Pro preparations were heterogeneous in size. Sedimentation velocity confirmed the previous observation and revealed that the active protein solution contained several sedimenting species compatible with dimers, tetramers, hexamers, and octamers of the protein. Electron microscopy fields of purified protein showed particles of different sizes and shapes. The reconstructed 3D structures suggested that the observed particles could correspond to dimeric, tetrameric, and hexameric forms of the protein. A model of the interactions required for oligomerization of the HC-Pro of potyviruses is proposed.  相似文献   

8.
Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifacts, seen as the loss of three-dimensional (3D) resolution in the reconstructed images. The goal of this study was to achieve isotropic resolution with a statistical reconstruction method, sequential maximum a posteriori expectation maximization (sMAP-EM), using no prior morphological knowledge about the specimen. The missing wedge effects on sMAP-EM were examined with a synthetic cell phantom to assess the effects of noise. An experimental dataset of a multivesicular body was evaluated with a number of gold particles. An ellipsoid fitting based method was developed to realize the quantitative measures elongation and contrast in an automated, objective, and reliable way. The method statistically evaluates the sub-volumes containing gold particles randomly located in various parts of the whole volume, thus giving information about the robustness of the volume reconstruction. The quantitative results were also compared with reconstructions made with widely-used weighted backprojection and simultaneous iterative reconstruction technique methods. The results showed that the proposed sMAP-EM method significantly suppresses the effects of the missing information producing isotropic resolution. Furthermore, this method improves the contrast ratio, enhancing the applicability of further automatic and semi-automatic analysis. These improvements in ET reconstruction by sMAP-EM enable analysis of subcellular structures with higher three-dimensional resolution and contrast than conventional methods.  相似文献   

9.
Size polydispersity of immature human immunodeficiency virus type 1 (HIV-1) particles represents a challenge for traditional methods of biological ultrastructural analysis. An in vitro model for immature HIV-1 particles constructed from recombinant Gag proteins lacking residues 16-99 and the p6 domain assembled around spherical nanoparticles functionalized with DNA. This template-directed assembly approach led to a significant reduction in size polydispersity and revealed previously unknown structural features of immature-like HIV-1 particles. Electron microscopy and image reconstruction of these particles suggest that the Gag shell formed from different protein regions that are connected by a “scar”—an extended defect connecting the edges of two continuous, regularly packed protein layers. Thus, instead of a holey protein array, the experimental model presented here appears to consist of a continuous array of ∼ 5000 proteins enveloping the core, in which regular regions are separated by extended areas of disorder.  相似文献   

10.
Peritubular dentin (PTD) is a relatively dense mineralized tissue that surrounds the tubules of coronal tooth dentin. It is composed mainly of crystals of carbonated apatite together with a small amount of collagen. Its mode of formation has been investigated by studying the relatively dense particles isolated from a powdered preparation. Electron microscopic examination of the PTD particles, including 3-dimensional image reconstruction and electron diffraction, shows that the organization of the crystals of PTD is very similar to that of the adjacent intertubular dentin (ITD). The latter contains relatively large amounts of collagen and the carbonated apatite crystals are closely associated with the collagen matrix. The proteins present in the PTD particles are soluble after decalcification and stain with Stains All. The principal protein has higher molecular weight and a quite different amino acid composition than the phosphophoryns of the intertubular dentin. The interface between the PTD and the ITD shows structural continuity. These data show how two distinct carbonated apatite-based mineralized tissues can be organized and formed contiguously within the same organ by utilizing different sets of matrix proteins.  相似文献   

11.
We have reconstructed a three-dimensional map of keyhole limpet hemocyanin isoform 1 (KLH1), using our automated data collection software, Leginon, integrated with particle selection algorithms, and the SPIDER reconstruction package. KLH1, a 7.9 MDa macromolecule, is an extracellular respiratory pigment composed of two asymmetric decamers, and presents an overall D(5) point-group symmetry. The reconstruction is in agreement with previous data published on molluscan hemocyanins. The reconstructed map (11.3A resolution, 3sigma criterion) was used to fit an available X-ray crystallography structure of Octopus dofleini Odg, solved at 2.3A [J. Mol. Biol. 278 (4) (1998) 855], with satisfactory results. The results validate the approach of automating the cryoEM process and demonstrate that the quality of the images acquired and the particles selected is comparable to those obtained using manual methods. Several problems remain to be solved however before these results can be generalized.  相似文献   

12.
We report on initial results of using a new direct detection device (DDD) for single particle reconstruction of vitreous ice embedded specimens. Images were acquired on a Tecnai F20 at 200 keV and a nominal magnification of 29,000×. This camera has a significantly improved signal to noise ratio and modulation transfer function (MTF) at 200 keV compared to a standard CCD camera installed on the same microscope. Control of the DDD has been integrated into Leginon, an automated data collection system. Using GroEL as a test specimen, we obtained images of ∼30 K particles with the CCD and the DDD from the same specimen sample using essentially identical imaging conditions. Comparison of the maps reconstructed from the CCD images and the DDD images demonstrates the improved performance of the DDD. We also obtained a 3D reconstruction from ∼70 K GroEL particles acquired using the DDD; the quality of the density map demonstrates the potential of this new recording device for cryoEM data acquisition.  相似文献   

13.
Electron micrographs show the small (30 S) subunit of Escherichia coli ribosomes lying in a wide range of positions on the specimen support, related by rotation principally around the long axis of the particle. Through correspondence analysis, a multivariate statistical method that distinguishes the major factors accounting for interimage variance, the (aligned) views of the randomly oriented particles were ordered and grouped according to tilt angle. Views so grouped were then averaged and used as input to a three-dimensional reconstruction program.The particle reconstructed from nine averaged projections spanning a 160 ° rotational range has a resolution of 5 nm in planes perpendicular to the long axis of the particle and ~ 3 nm in the direction of the long axis. It is somewhat asymmetrical and quite compact; its most conspicuous feature is the “platform” that wraps partially around the middle of the subunit.  相似文献   

14.
The 3D reconstruction of biological specimens using Electron Microscopy is currently capable of achieving subnanometer resolution. Unfortunately, this goal requires gathering tens of thousands of projection images that are frequently selected manually from micrographs. In this paper we introduce a new automatic particle selection that learns from the user which particles are of interest. The training phase is semi-supervised so that the user can correct the algorithm during picking and specifically identify incorrectly picked particles. By treating such errors specially, the algorithm attempts to minimize the number of false positives. We show that our algorithm is able to produce datasets with fewer wrongly selected particles than previously reported methods. Another advantage is that we avoid the need for an initial reference volume from which to generate picking projections by instead learning which particles to pick from the user. This package has been made publicly available in the open-source package Xmipp.  相似文献   

15.
Liu H  Wang S  Gao F  Tian Y  Chen W  Hu Z  Shi P 《PloS one》2012,7(3):e32224
In Positron Emission Tomography (PET), an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.  相似文献   

16.
In a previous paper we introduced a method called augmented sparse reconstruction (ASR) that identifies links among nodes of ordinary differential equation networks, given a small set of observed trajectories with various initial conditions. The main purpose of that technique was to reconstruct intracellular protein signaling networks.In this paper we show that a recursive augmented sparse reconstruction generates artificial networks that are homologous to a large, reference network, in the sense that kinase inhibition of several reactions in the network alters the trajectories of a sizable number of proteins in comparable ways for reference and reconstructed networks. We show this result using a large in-silico model of the epidermal growth factor receptor (EGF-R) driven signaling cascade to generate the data used in the reconstruction algorithm.The most significant consequence of this observed homology is that a nearly optimal combinatorial dosage of kinase inhibitors can be inferred, for many nodes, from the reconstructed network, a result potentially useful for a variety of applications in personalized medicine.  相似文献   

17.
18.
Electron cryomicroscopy and icosahedral reconstruction are used to obtain the three-dimensional structure of the 1250-A-diameter herpesvirus B-capsid. The centers and orientations of particles in focal pairs of 400-kV, spot-scan micrographs are determined and iteratively refined by common-lines-based local and global refinement procedures. We describe the rationale behind choosing shared-memory multiprocessor computers for executing the global refinement, which is the most computationally intensive step in the reconstruction procedure. This refinement has been implemented on three different shared-memory supercomputers. The speedup and efficiency are evaluated by using test data sets with different numbers of particles and processors. Using this parallel refinement program, we refine the herpesvirus B-capsid from 355-particle images to 13-A resolution. The map shows new structural features and interactions of the protein subunits in the three distinct morphological units: penton, hexon, and triplex of this T = 16 icosahedral particle.  相似文献   

19.
Endosomes are one of the major membrane sorting checkpoints in eukaryotic cells and they regulate recycling or destruction of proteins mostly from the plasma membrane and the Golgi. As a result the endosomal system plays a central role in maintaining cell homeostasis, and mutations in genes belonging to this network of organelles interconnected by vesicular transport, cause severe pathologies including cancer and neurobiological disorders. It is therefore of prime relevance to understand the mechanisms underlying the biogenesis and organization of the endosomal system. The yeast Saccharomyces cerevisiae has been pivotal in this task. To specifically label and analyze at the ultrastructural level the endosomal system of this model organism, we present here a detailed protocol for the positively charged nanogold uptake by spheroplasts followed by the visualization of these particles through a silver enhancement reaction. This method is also a valuable tool for the morphological examination of mutants with defects in endosomal trafficking. Moreover, it is not only applicable for ultrastructural examinations but it can also be combined with immunogold labelings for protein localization investigations.  相似文献   

20.
We have used conical tomography to study the structure of integral proteins in their phospholipid bilayer environments. Complete conical series were collected from replicas of the water channel aquaporin-0 (AQP0), a 6.6 nm side tetramer with a molecular weight of approximately 120 kDa that was purified and reconstituted in liposomes. The replicas were tilted at 38 degrees , 50 degrees or 55 degrees and rotated by 2.5 degrees , 4 degrees , or 5 degrees increments until completing 360 degrees turns. The elliptical paths of between 6 and 12 freeze-fracture particles aligned the images to a common coordinate system. Using the weighted back projection algorithm, small volumes of the replicas were independently reconstructed to reconstitute the field. Using the Fourier Shell Correlation computed from reconstructions of even and odd projections of the series, we estimated a resolution of 2-3 nm, a value that was close to the thickness of the replica (approximately 1.5 nm). The 3D reconstructions exhibited isotropic resolution along the x-y plane, which simplified the analysis of particles oriented randomly in the membrane plane. In contrast to reconstructions from single particles imaged using random conical tilt [J. Mol. Biol. 325 (2003) 210], the reconstructions using conical tomography allowed the size and shape of individual particles representing the AQP0 channel to be identified without averaging or imposing symmetry. In conclusion, the reconstruction of freeze-fracture replicas with electron tomography has provided a novel experimental approach for the study of integral proteins inserted in phospholipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号