首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
At least three enzymes have been identified in atrial tissue homogenates that are capable of processing pro-atrial natriuretic factor to active atrial peptides. The atrial peptides possess potent natriuretic, diuretic, vasorelaxant, and hemodynamic properties, and their existence has implicated the mammalian heart as an endocrine organ. We have purified and characterized a serine proteinase (Mr approximately equal to 70,000) associated with atrial granules that preferentially hydrolyzes the Arg-Ser bond in the synthetic substrates Gly-Pro-Arg-Ser-Leu-Arg, benzoyl-Gly-Pro-Arg-Ser-Leu-Arg, and benzoyl-Gly-Pro-Arg-Ser-Leu-Arg-Arg-2-naphthylamide, the Arg-2-naphthylamide bond in the substrate benzoyl-Gly-Pro-Arg-2-naphthylamide, and the Arg-Ser bond in a 31-residue substrate (Gly96-Tyr126 peptide) corresponding to residues Arg98-Ser99 in pro-atrial natriuretic factor. The Gly96-Tyr126 peptide contains the putative processing site in pro-atrial natriuretic factor and the sequence for the bioactive peptides. Our results indicate that the minimum processing site sequence is -Gly-Pro-Arg-Ser-Leu-Arg-Arg- and that the Ser99-Tyr126 natriuretic peptide is the predominant hydrolytic product. After prolonged incubation or at high enzyme concentrations, the Ser103-Tyr126 natriuretic peptide may also be formed. The Ser103-Arg125 natriuretic peptide was only a very minor product. The doublet of basic amino acids is not the primary processing site in pro-atrial natriuretic factor, but their presence may influence cleavage at the single Arg residue "upstream." Our findings are consistent with the idea that the pro-protein and the processing enzymes are packaged into the secretory granule and in response to the proper stimulus, the pro-protein is processed to the active peptides, probably during the process of secretion. The processing pathway of pro-atrial natriuretic factor is discussed.  相似文献   

2.
Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

3.
Human atrial natriuretic peptide (Ser 99-Tyr 126) was rapidly degraded by both choroid plexus and hypothalamic membranes with a complex pattern of cleavage. The use of protease inhibitors allowed a preliminary characterization of the enzymes involved in the hydrolysis of the Ser-Phe and Phe-Arg bonds of iodine-labelled atrial natriuretic peptide.The C-terminal tripeptide was generated by three different enzymatic activities acting on the Ser-Phe bond: endopeptidase 24.11, a phosphoramidon-insensitive metallopeptidase and a thiol protease. Peptides like substance P, neurotensin, bradykinin inhibited the cleavage of the Ser-Phe bond of atrial natriuretic peptide. The C-terminal tripeptide was further degraded by aminopeptidases. Cleavage of the C-terminal dipeptide was inhibited by aprotinin, suggesting the contribution of brain kallikrein in the formation of this metabolite.These results show that many different proteases were involved in the hydrolysis of the C-terminal sequence of atrial natriuretic peptide, at least in vitro and underline the complexity of neuropeptide catabolism by brain preparations.  相似文献   

4.
A seryl protease which catalyzes conversion of proatrial natriuretic factor (ANF) to the active circulating form, ANF(99-126), was purified from a particulate fraction of bovine atria. The enzyme was solubilized with 1.6 M KCl. The molecular mass of the purified enzyme was 580 kDa on gel filtration, whereas by sodium dodecyl sulfate-polyacrylamide gel electrophoresis a cluster of six bands with molecular masses around 30 kDa was observed. The purified enzyme produced ANF(99-126) from partially purified bovine pro-ANF by the selective cleavage of the arginyl peptide bond in the -Pro97-Arg98-Ser99-sequence in pro-ANF. The enzyme was localized mainly in the microsomal fraction rather than the granule fraction. It is likely that the enzyme selectively cleaves the Arg98-Ser99 peptide bond in pro-ANF during the process of secretion.  相似文献   

5.
We previously reported the discovery and partial characterization of bovine atrial granule serine proteinase, a candidate processing enzyme of pro-atrial natriuretic factor, which is associated with atrial granule membranes. We now report the physicochemical properties of electrophoretically homogeneous enzyme purified by a series of chromatography steps from a subcellular fraction enriched for atrial granules. The enzyme tends to associate during purification to higher molecular weight species, but SDS-PAGE analysis reveals a single polypeptide chain of molecular weight 70,000. The enzyme is activated 2-3 fold by Ca+2 and 1.5-fold by Mg+2 and is nearly 100% inhibited by Zn+2 or Co+2. Thus, the enzyme can be considered a calcium activated, neutral pH, serine proteinase. Based on the hydrolysis of numerous synthetic peptide substrates, the recognition sequence for the enzyme within the pro-hormone has been mapped to A96PRSLRR102; cleavage occurs at the Arg98-Ser99 bond yielding bioactive atrial natriuretic peptide directly from the pro-hormone. The doublet of basic amino acids is part of the recognition sequence but is not the primary cleavage site. It is our hypothesis that the processing site sequence acts as a recognition element for the endoproteinase and resides at the surface of the pro-hormone and thus contributes to the molecular basis for limited proteolysis.  相似文献   

6.
We examined the specificity of a bovine hypothalamic neurosecretory granule enzyme which we discovered and which is capable of processing pro-gonadotropin releasing hormone precursor protein to yield gonadotropin associated peptide and a C-terminal extended form of gonadotropin releasing hormone (Palen et al.). The sequence in the precursor protein that separates the two active peptides is -Gly-Gly-Lys-Arg- where the pair of basic residues, -Lys-Arg-, is the anticipated cleavage site. On the basis of Vmax/Km as the measure of substrate specificity, Benzoyl(Bz)-Gly-Gly-Lys-Arg-2-Napthylamide (NA) greater than Bz-Gly-Gly-Arg-Lys-2-NA much greater than Bz-Gly-Gly-Arg-Arg-2-NA approximately equal to Bz-Gly-Gly-Lys-Lys-2-NA. Bz-Gly-Gly-Lys(N(epsilon)-acetyl)-Arg-2-NA is a very poor substrate. Our results indicate that the composition and sequence of the pair of basic residues at the primary cleavage site is important for enzyme specificity and that changes in the P1 or P2 residues of a potential substrate may affect both Km and Vmax. Hydrolysis of all substrates occurs at the P1-2-NA bond. We had previously shown that there is no cleavage between the pair of basic residues. With longer peptide substrates, Bz-Gly-Leu-Arg-Pro-Gly-Gly-Lys-Arg-2-NA greater than Bz-Gly-Leu-Arg(NO2)-Pro-Gly-Gly-Lys-Arg-2-NA greater than Bz-Gly-Gly-Lys-Arg-2-NA. Extending the substrate sequence to more closely resemble the amino acid sequence in the precursor protein improves Km 10-fold and Vmax about 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Disappearance of atrial natriuretic factor from circulation in the rat   总被引:8,自引:0,他引:8  
The rate of disappearance of radioiodinated forms of 3 different atrial natriuretic factors (ANF (Ser 99-Tyr 126), ANF (Arg 101-Tyr 126), ANF (Ser 103-Tyr 126)) from circulation in the rat was studied. Before proceeding to study the half-life of these peptides, the biological activity of their cold iodinated forms was examined. Upon incorporation of iodine into the ANF molecule, there was a 2 to 5-fold loss in their binding affinities to mesenteric arteries and adrenal capsules as compared to their respective uniodinated forms. A similar loss in their potency to inhibit basal aldosterone release from adrenal zona glomerulosa cells was observed. The rate of disappearance of the radioiodinated peptides from plasma was very fast; the half-life of ANF (Ser 99-Tyr 126) was 16.8 +/- 0.9 sec. Similar values were also obtained for ANF (Arg 101-Tyr 126) and ANF (Ser 103-Tyr 126). The in vivo disappearance of ANF from plasma is probably due to the binding to receptors in the cells since in vitro incubation of ANF (Ser 99-Tyr 126) with rat plasma caused only a slight loss in its immunoreactivity in the first 5 minutes. Hepatectomy and nephrectomy did not cause any major prolongation of the disappearance rate suggesting that these two organs may not be the primary sites involved in the removal of this peptide from circulation.  相似文献   

8.
Atrial natriuretic factor (ANF), released by the isolated perfused rat heart, was extracted from the perfusates by C18 Sep-Pak cartridges and then isolated by immunoaffinity chromatography and by reverse phase HPLC. About 500 ng of immunoreactive material were so obtained and submitted to amino acid sequencing. The C-terminal Tyr was detected by radiolabelling. Identification of these residues indicated that the primary structure corresponds to ANF (Ser 99-Tyr 126) which is identical to the circulating form in the rat. These results indicate that the ANF released by the atria corresponds to a short peptide. Therefore, its maturation process may therefore take place either intracellularly or during secretion and implicates a tryptic-like cleavage after a single Arg residue in position 98.  相似文献   

9.
With the objective of identifying specific peptidase responsible for the processing of atrial natriuretic factor precursor pro-ANF to the circulating active form ANF (99-126), a fluorometric assay method was devised using synthetic fluorogenic substrate Boc-Ala-Gly-Pro-Arg-MCA(methylcoumarinamide) which contains the amino acid sequence immediately adjacent to the arginyl peptide bond which is cleaved in the natural processing of pro-ANF. A protease which selectively cleaves this bond and produces the natural circulating peptide was identified in the particulate fraction of rat atrial homogenate and was solubilized by 1.6 M KCl. It was partially purified by affinity chromatography heparin-agarose column and was shown to be a serine protease. Its reaction product with natural pro-ANF was identified as ANF (99-126) containing 28 amino acid residues.  相似文献   

10.
Although cleavage of peptides at sites marked by paired basic amino acids is a common feature of prohormone processing, little is known about the properties of endoprotease(s) responsible for cleavage of the precursor. To examine the cleavage specificity of a processing endoprotease, we have altered the Lys-Arg cleavage site of human prorenin to Arg-Arg, Lys-Lys and Arg-Lys by site-directed mutagenesis, and expressed the native and mutated precursors in mouse pituitary AtT-20 cells which are known to process foreign prohormones, including prorenin, at paired basic sites during the regulated secretory process. All native and mutated human prorenins were sorted into the regulated secretory pathway. The mutated precursor with Arg-Arg instead of the Lys-Arg native pair was processed at about half the efficiency of the native one, while the Lys-Lys and Arg-Lys mutants were not processed. Rat prorenin, which naturally has a Lys-Lys pair, was not processed in the cells. In addition, mouse Ren2 prorenin, which has a Ser residue next to the Lys-Arg pair, but not mouse Ren1 prorenin, which has a Pro residue next to the pair, was processed. These results suggest that the Arg residue at the COOH side of the basic pair is essential for cleavage of prorenins by a processing enzyme during the regulated secretory process in AtT-20 cells, although the NH2-side Lys residue also plays a role. The results also demonstrate that the processing enzyme cannot cleave the Arg-Pro peptide bond.  相似文献   

11.
Summary The secretory pathways of atrial natriuretic factor have been investigated in atrial and ventricular cardiocytes of control and cardiomyopathic Syrian hamsters in severe congestive heart failure with four antibodies: a monoclonal antibody (2H2) against rat synthetic atrial natriuretic factor (101–126), which is directed against region 101–103 of rat atrial natriuretic factor (99–126), and polyclonal, affinity-purified antibodies produced in rabbits against synthetic C-terminal atrial natriuretic factor (101–126), synthetic N-terminal atrial natriuretic factor (11–37) or the putative cleavage site of atrial natriuretic factor (98–99): atrial natriuretic factor (94–103). Application of the immunogold technique on thin frozen sections (immunocryoultramicrotomy) revealed an identical picture with the four antibodies. In atria of both control and cardiomyopathic hamsters where atrial natriuretic factor secretion is regulated, the atrial natriuretic factor propeptide travels, uncleaved, from the Golgi complex to immature and mature secretory granules. In ventricles of control hamsters, where secretion is constitutive, the atrial natriuretic factor propeptide travels from the Golgi complex to secretory vesicles. In the ventricles of hamsters with severe congestive heart failure, the Golgi complex is larger, secretory vesicles more abundant and a few secretory granules are present in 20% of cardiocytes. Here again, the peptide travels uncleaved in all these pathways. These results reveal the pathways of secretion of atrial natriuretic factor in atrial and ventricular cardiocytes and indicate that the propeptide is not cleaved intracellularly.Supported by a grant from the Medical Research Council of Canada to the Multidisciplinary Research Group on Hypertension, by the Canadian Heart Foundation and the Pfizer Company (England)  相似文献   

12.
The presence of biologically active atrial natriuretic factor (ANF)-like peptides was demonstrated in rat anterior pituitary. ANF-like immunoreactivity was detected in rat anterior pituitary by specific radioimmunoassay and was extracted from rat anterior pituitary homogenates by heat-activated Vycor glass beads; extracts were purified by reverse-phase high performance liquid chromatography. Two peaks containing ANF immunoreactive material were obtained. The first peak was eluted from the C18 mu Bondapak column at a position similar to the 28-amino acid carboxy terminal peptide (Ser99-Tyr126)-ANF of prohormone. The second peak had the same pattern of elution as the 126-amino acid prohormone, (Asn1-Tyr126)-ANF. The biological activity of the smaller molecular weight peptide (28 amino acid) was assessed by its inhibitory effect on 10(-8) M ACTH-stimulated aldosterone secretion in rat zona glomerulosa cell suspension. This ANF-like material also displaced I125-labelled ANF from rat glomerular receptors with a potency similar to synthetic (Arg101-Tyr126)-ANF. Immunocytochemical localization revealed a distribution of ANF-stained cells similar in pattern and location to that of gonadotrophs. These results suggest the existence of biologically active ANF-like peptides and ANF prohormone within the anterior pituitary. However, their role remains to be elucidated.  相似文献   

13.
1. The proteolytic processing sites of human lysosomal aspartic protease cathepsin D at which the intermediate single-chain form was converted into the mature two-chain form were determined. 2. The two chains were isolated by reversed-phase HPLC in order to investigate the cleavage sites of the enzyme. 3. Protein sequencing of the heavy chain, which was presumed to be derived from the C-terminal side in the single-chain enzyme, gave an N-terminal Leu 105. In addition, it revealed that there were also minor sequences, which commenced with Gly 106 and Gly 107. 4. A small C-terminal peptide was isolated from the light chain, which had been digested with two kinds of exogenous proteases. Sequence determination of this peptide, which was characterized as a nonapeptide by mass spectrometry, suggested that the C-terminus of the light chain was Ser 98. 5. These results indicate that a Ser 98-Ala 99 bond and an Ala 104-Leu 105 bond are cleaved to release 6 amino acid residues between the two chains.  相似文献   

14.
An atrial natriuretic peptide has been isolated from plasma of morphine treated rats by means of glass beads extraction, immunoaffinity chromatography, and reverse phase HPLC. 1.3 micrograms of immunoreactive material was obtained. The biological activity of this material was found comparable to that of ANF (Arg 101 - Tyr 126) on the inhibition of basal aldosterone secretion by rat adrenal zona glomerulosa cells and the displacement curve of iodinated ANF from ANF receptors in a mesenteric artery preparation. Gas phase amino acid sequencing indicated that it is related to ANF (Ser 99 - Tyr 126). These results suggest that the maturation of ANF may require a tryptic-like cleavage after a single Arg residue.  相似文献   

15.
We have previously reported the existence of a peptide factor in the adrenal medulla which inhibits aldosterone secretion in cultured bovine zona glomerulosa cells. The acid extracts of chromaffin granules from bovine adrenal medulla were purified by a four step high performance liquid chromatography procedure. Two active fractions exhibited sequence homology with bovine atrial natriuretic factor ANF (Ser99-Tyr126) and its polypeptide precursor (Asn1-Tyr126). The occurrence of both precursor and mature forms of ANF within chromaffin granules indicates the endogenous character of ANF in the adrenal medulla and suggests the potential usefulness of cultured adrenal chromaffin cells for investigating the synthesis, maturation and secretion of atrial peptides.  相似文献   

16.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

17.
Proteolytic inactivation of activated factor V (FVa) by activated protein C (APC) is a key reaction in the regulation of hemostasis. We now demonstrate the importance of a positive cluster in loop 37 of the serine protease (SP) domain of APC for the degradation of FVa. Lysine residues in APC at positions 37, 38, and 39 form a secondary binding site for FVa, which is important for cleavage of FVa at Arg-506 while having no effect on Arg-306 cleavage. In contrast, topological neighbors Lys-62, Lys-63, and Arg-74 in APC appear of minor importance in FVa degradation. This demonstrates that secondary binding exosites of APC specifically guide the proteolytic action of APC, resulting in a more favorable degradation of the 506-507 peptide bond as compared with the 306-307 bond.  相似文献   

18.
Atrial natriuretic factor-(Asn1-Tyr126)-peptide, the 13.6 kDa propeptide of atrial natriuretic factor (ANF), is stored in the secretory granules of atrial cardiocytes. ANF-(Ser99-Tyr126)-peptide, the 28-amino-acid species, is the circulating form of this hormone in the rat. As the site of maturation of the prohormone is still unknown, the present study was undertaken to understand the contribution of the circulation to the maturation process of pro-ANF. 125I-ANF-(Asn1-Tyr126)-peptide was incubated with whole rat blood, plasma or serum for different time intervals, and the products were analysed. There was minimal activation of the propeptide in either whole blood or plasma. Incubation with serum, however, resulted in the formation of an 11 kDa and a 3 kDa peptide which corresponded respectively to the N-terminal and C-terminal parts of the propeptide. These results suggest that hydrolysis of the propeptide in serum is brought about by enzymes that may be stimulated during coagulation but which may not play a major role in the activation of pro-ANF in the circulation. Plasma analysis at different time intervals after prohormone injection indicated a non-specific hydrolysis of the pro-ANF molecule. The disappearance rate curves, obtained with radiolabelled pro-ANF, suggested the presence of two components with half-lives of 2.1 +/- 0.4 min and 52.5 +/- 8.4 min respectively. A metabolic clearance rate of 1.49 +/- 0.22 ml/min and an initial distribution volume of 47.4 +/- 8 ml were calculated. These results indicate that the maturation of pro-ANF to its active circulating form takes place before it is released into the circulation.  相似文献   

19.
An immunological approach was used to investigate the specificity of protease cleavage sites on proANF. Cleavage of 35S-cysteine biosynthetically-labeled proANF by whole serum, thrombin and kallikrein was examined. Reaction products were immunoprecipitated with two antibodies directed to different epitopes: a previously characterized antibody directed toward the carboxy-terminus of ANF103–126, which cross reacts with proANF, ANF99–126 and ANF103–126, and a newly prepared antisera to synthetic ANF99–105, which uniquely recognizes ANF99–126, but not proANF or ANF103–126. With increasing time of incubation with rat serum, proANF is sequentially cleaved at the C-terminus of a monobasic Pro-Arg dipeptide sequence to form ANF99–126, and then at the C-terminus of a dibasic Arg-Arg dipeptide sequence to yield ANF103–126. This cleavage activity of serum is blocked by leupeptin (40 μg/ml), but not by hirudin (100 nM), a specific inhibitor of thrombin, or by aprotinin (200 KIU/ml), a kallikrein inhibitor. When 100-fold purified serum cleavage enzyme was used in place of crude serum, similar results were obtained. Thrombin cleaves proANF only at the monobasic site to produce ANF99–126 while kallikrein cleaves only at the dibasic site to produce ANF103–126. As expected, the generation of these cleavage products can be inhibited by hirudin or aprotinin respectively. These data indicate that the substrate specificity of the serum cleavage activity is broader than that of thrombin or kallikrein, and that cleavage of proANF by serum proteases may be influenced by conformational restraints. The methods developed here should help in the future characterization of the physiological proANF cleaving enzyme.  相似文献   

20.
The biological activities of ANF (Arg 101-Tyr 126) and of the circulating form, ANF (Ser 99-Tyr 126), were compared in the following assays: precontracted rabbit aortic strip and chick rectum, rat natriuresis, inhibition of aldosterone secretion and receptor affinity in bovine and rat adrenal zona glomerulosa cells, and receptor affinity in rabbit aorta and rat mesenteric artery cells. The results demonstrate that both peptides share the same biological activities. It is concluded that the addition of two amino acids to the N-terminal of ANF (Arg 101-Tyr 126) does not modify its biological characteristics, validating thus previous research employing this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号