首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Hydroxynitrile lyases (HNLs) are sought-after, stereo-selective biocatalysts used in the agrochemical, pharmaceutical and fine chemical industries to produce cyanohydrin enantiomers. There are several approaches for the discovery of HNLs, most of which are methodologically demanding and not suitable for high-throughput. Bioprospecting studies to date have also been constrained/limited to commercialised plants or botanical gardens, leaving a vast majority of plant species untested for HNL activity or cyanogenesis. To increase the rate of discovery of HCN liberating plants, we devised a Feigl-Anger microfuge tube that is portable and capable of high throughput detection of naturally cyanogenic plants. A workflow suitable for detecting plant candidates containing extractable, novel HNLs was subsequently applied. In this study, we screened over 600 plants for cyanogenic activity as well as the ability to degrade racemic mandelonitrile. We detected 33 plants able to degrade racemic mandelonitrile, of which, 25 were identified to the species level. Six of these plants were found to be naturally cyanogenic. Protein extracts from 5 of the naturally cyanogenic plants retained the ability to degrade racemic mandelonitrile pointing to five yet undescribed enzymes in the species Achyranthes aspera, Davallia trichomonoides, Morus mesozygia, Polypodium aureum “Mandaianum”, and Thelypteris confluens. In contrast, although Acalypha glabrata was found to be naturally cyanogenic, the protein extract did not break down racemic mandelonitrile. Here, we used racemic mandelonitrile as substrate and detected enzymes with mandelonitrile lyase activity, however, any cyanohydrin could be used as part of the approach taken here to detect novel HNLs specific to the substrate utilised.  相似文献   

2.
3.
The hydroxynitrile lyases (HNLs) from Hevea brasiliensis (HbHNL) and from Manihot esculenta (MeHNL) are both members of the alpha/beta-hydrolase superfamily. Mechanistic proposals have been put forward in the past for both enzymes; they differed with respect to the role of the active-site lysine residue for which a catalytic function was claimed for the Hevea enzyme but denied for the Manihot enzyme. We applied a freeze-quench method to prepare crystals of the complex of HbHNL with the biological substrate acetone cyanohydrin and determined its three-dimensional structure. Site-directed mutagenesis was used to prepare the mutant K236L, which is inactive although its three-dimensional structure is similar to the wild-type enzyme. However, the structure of the K236L-acetone cyanohydrin complex shows the substrate in a different orientation from the wild-type complex. Finite difference Poisson-Boltzmann calculations show that in the absence of Lys(236) the catalytic base His(235) would be protonated at neutral pH. All of this suggests that Lys(236) is instrumental for catalysis in several ways, i.e. by correctly positioning the substrate, by stabilizing the negatively charged reaction product CN(-), and by modulating the basicity of the catalytic base. These data complete the elucidation of the reaction mechanism of alpha/beta-hydrolase HNLs, in which the catalytic triad acts as a general base rather than as a nucleophile; proton abstraction from the substrate is performed by the serine, and reprotonation of the product cyanide is performed by the histidine residues. Together with a threonine side chain, the active-site serine and lysine are also involved in substrate binding.  相似文献   

4.
The leaves of Nandina domestica Thunb. exhibited high hydroxynitrile lyase (HNL) activity in (R)-mandelonitrile synthesis. The specific activity of young leaves was significantly higher than that of mature leaves. We isolated two HNLs with molecular mass of 24.9 kDa (NdHNL-S) and 28.0 kDa (NdHNL-L) from the young leaves. Both NdHNLs were composed of two identical subunits, without FAD and carbohydrates. We purified NdHNL-L and revealed its enzymatic properties. The whole deduced amino acid sequence of NdHNL-L was not homologous to any other HNLs, and the specific activity for mandelonitrile synthesis by NdHNL-L was higher than that by other plant HNLs. The enzyme catalyzed enantioselective synthesis of (R)-cyanohydrins, exhibited high activity at pH 4.0, and high stability in the pH range of 3.5–8.0 and below 55°C. Thus, NdHNL-L is a novel HNL with novel amino acid sequence and has a potential for the efficient production of (R)-cyanohydrins.  相似文献   

5.
Hydroxynitrile lyases in stereoselective catalysis   总被引:4,自引:0,他引:4  
(R)- as well as (S)-cyanohydrins are now easily available as a result of the excellent accessibility, the relatively high stability and the easy handling of hydroxynitrile lyases (HNLs). The optimization of reaction conditions (solvent, temperature, and using site-directed mutagenesis, etc.) has enabled HNL-catalyzed preparations of optically active cyanohydrins on a technical scale. The enantioselectivity of chiral metal-complex-catalyzed additions of trimethylsilyl cyanide to aldehydes has been improved, but is, by far, not yet competitive with the HNL-catalyzed reactions.  相似文献   

6.
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity in the cleavage and the synthesis reaction of (R)-mandelonitrile with up to 74% conversion of benzaldehyde (enantiopreference ee 89%). Both showed high similarity to proteins of the cupin superfamily which so far were not known to exhibit HNL activity.  相似文献   

7.
Hydroxynitrile lyases (HNLs, EC 4.1.2.10, EC 4.1.2.11, EC 4.1.2.37, EC 4.1.2.39) enantioselectively catalyse the reversible addition of HCN to ketones or aldehydes, thereby forming chiral cyanohydrins, which is of special interest for industrial bio-conversions. We cloned the gene for the HNL isoenzyme 5 (PaHNL5) of the almond tree (Prunus amygdalus) and overexpressed it in the methylotrophic yeast Pichia pastoris. This opened new ways for the synthesis of (R)-cyanohydrins. The characterisation of PaHNL5 revealed high activity for the natural substrate and high enantioselectivity. For further improvement of enzyme properties such as higher activity for the conversion of unnatural substrates, a high throughput cultivation and screening system has been created, which allows the employment of P. pastoris as production host for high throughput cultivation and screening of thousands of enzyme variants. The synthesis and cleavage of 2-chlorobenzaldehyde cyanohydrin were used for the demonstration of enzyme activity of recombinant PaHNL5 with a non-natural substrate and for the development of a high throughput screening procedure.  相似文献   

8.
Hydroxynitrile lyases: Functions and properties   总被引:6,自引:0,他引:6  
Plant hydroxynitrile lyases (Hnl) have attracted the attention of bioorganic scientists for more than 90 years. However, the most important increase in knowledge of this class of enzymes has only arisen in the recent decade. The industrial application of these enzymes as biocatalysts for the synthesis of enantiomerically pure α-cyanohydrins may be responsible for the growing interest in this area.
The Hnls are involved in the catabolic degradation of cyanogenic glycosides, releasing HCN which serves as defense agent against herbivores and microbial attack, or as a nitrogen source. Hydroxynitrile lyases from various plant families appear to represent a new example of enzymes that originated from the convergent evolution of different precursor proteins. The enzymes have been classified into non-FAD- and FAD-containing proteins. FAD-containing enzymes have been isolated exclusively from the Rosaceae, whereas the FAD-independent Hnls, which are more heterogenous in structure, have been characterized from various plant families (Poaceae, Euphorbiaceae, Linaceae, Olacaceae. Filitaceae). The aim of this review is to present a general survey of the natural function and localization of this class of enzymes and a comprehensive summary of the biochemical and genetic data of the isolated proteins.  相似文献   

9.
Several enzymes that were originally characterized to have one defined function in intermediatory metabolism are now shown to participate in a number of other cellular processes. Multifunctional proteins may be crucial for building of the highly complex networks that maintain the function and structure in the eukaryotic cell possessing a relatively low number of protein-encoding genes. One facet of this phenomenon, on which I will focus in this review, is the interaction of metabolic enzymes with RNA. The list of such enzymes known to be associated with RNA is constantly expanding, but the most intriguing question remains unanswered: are the metabolic enzyme-RNA interactions relevant in the regulation of cell metabolism? It has been proposed that metabolic RNA-binding enzymes participate in general regulatory circuits linking a metabolic function to a regulatory mechanism, similar to the situation of the metabolic enzyme aconitase, which also functions as iron-responsive RNA-binding regulatory element. However, some authors have cautioned that some of such enzymes may merely represent "molecular fossils" of the transition from an RNA to a protein world and that the RNA-binding properties may not have a functional significance. Here I will describe enzymes that have been shown to interact with RNA (in several cases a newly discovered RNA-binding protein has been identified as a well-known metabolic enzyme) and particularly point out those whose ability to interact with RNA seems to have a proven physiological significance. I will also try to depict the molecular switch between an enzyme's metabolic and regulatory functions in cases where such a mechanism has been elucidated. For most of these enzymes relations between their enzymatic functions and RNA metabolism are unclear or seem not to exist. All these enzymes are ancient, as judged by their wide distribution, and participate in fundamental biochemical pathways.  相似文献   

10.
Two isozymes of chorismate mutase (CA mutase(1) and CA mutase(2)) and two isozymes of prephenate dehydratase (PPA dehydratase(1) and PPA dehydratase(2)) have been found in Pseudomonas aeruginosa. The activities CA mutase(2)-PPA dehydratase(2) catalyzing phenylalanine biosynthesis have been purified almost 40-fold and were found to be associated as a bifunctional enzyme or an enzyme complex. The enzymes specific for tyrosine biosynthesis did not appear to manifest such physical association. Thus, the organization of enzymes concerned with phenylalanine and tyrosine biosynthesis in P. aeruginosa is unique and is unlike most other organisms. Single site mutants have been isolated which have lost both CA mutase(2)-PPA dehydratase(2) activities resulting in a requirement for phenylalanine for growth. Single site revertants of these mutants regained both these activities simultaneously and were able to grow on minimal medium. A mutant, r(6), was also isolated which had normal CA mutase(2) but lacked PPA dehydratase(2) activity.  相似文献   

11.
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.  相似文献   

12.
Molecular biology of the C3 photosynthetic carbon reduction cycle   总被引:1,自引:0,他引:1  
In recent years the enzymes of the C3 photosynthetic carbon reduction (PCR) cycle have been studied using the techniques of molecular biology. In this review we discuss the primary protein sequences and structural predictions that have been made for a number of these enzymes, which, with the input of crystallographic analysis, gives the opportunity to understand the mechanisms of enzyme activity.The genome organisation and gene structure of the PCR enzymes is another area which has recently expanded, and we discuss the regulation of the genes encoding these enzymes and the complex interaction of various factors which influence their expression.  相似文献   

13.
Bacterial metabolism of polychlorinated biphenyls   总被引:2,自引:0,他引:2  
Microbial metabolism is responsible for the removal of persistent organic pollutants including PCBs from the environment. Anaerobic dehalogenation of highly chlorinated congeners in aquatic sediments is an important process, and recent evidence has indicated that Dehalococcoides and related organisms are predominantly responsible for this process. Such anaerobic dehalogenation generates lower chlorinated congeners which are easily degraded aerobically by enzymes of the biphenyl upper pathway (bph). Initial biphenyl 2,3-dioxygenases are generally considered the key enzymes of this pathway which determine substrate range and extent of PCB degradation. These enzymes have been subject to different protein evolution strategies, and subsequent enzymes have been considered as crucial for metabolism. Significant advances have been made regarding the mechanistic understanding of these enzymes, which has also included elucidation of the function of BphK glutathione transferase. So far, the genomes of two important PCB-metabolizing organisms, namely Burkholderia xenovorans strain LB400 and Rhodococcus sp. strain RHA1, have been sequenced, with the rational to better understand their overall physiology and evolution. Genomic and proteomic analysis also allowed a better evaluation of PCB toxicity. Like all bph gene clusters which have been characterized in detail, particularly in strains LB400 and RHA1, these genes were localized on mobile genetic elements endowing single strains and microbial communities with a high flexibility and adaptability. However, studies show that our knowledge on enzymes and genes involved in PCB metabolism is still rather fragmentary and that the diversity of bacterial strategies is highly underestimated. Overall, metabolism of biphenyl and PCBs should not be regarded as a simple linear pathway, but as a complex interplay between different catabolic gene modules.  相似文献   

14.
Sugar molecules as well as enzymes degrading them are ubiquitously present in physiological systems, especially for vertebrates. Polysaccharides have at least two aspects to their function, one due to their mechanical properties and the second one involves multiple regulatory processes or interactions between molecules, cells, or extracellular space. Various bacteria exert exogenous pressures on their host organism to diversity glycans and their structures in order for the host organism to evade the destructive function of such microbes. Many bacterial organism produce glycan-degrading enzymes in order to facilitate their invasion of host tissues. Such polysaccharide degrading enzymes utilize mainly two modes of polysaccharide-degradation, a hydrolysis and a β-elimination process. The three-dimensional structures of several of these enzymes have been elucidated recently using X-ray crystallography. There are many common structural motifs among these enzymes, mainly the presence of an elongated cleft transversing these molecules which functions as a polysaccharide substrate binding site as well as the catalytic site for these enzymes. The detailed structural information obtained about these enzymes allowed formulation of proposed mechanisms of their action. The polysaccharide lyases utilize a proton acceptance and donation mechanism (PAD), whereas polysaccharide hydrolases use a direct double displacement (DD) mechanism to degrade their substrates.  相似文献   

15.
16.
Plant aspartic proteinases: enzymes on the way to a function   总被引:7,自引:0,他引:7  
Plant aspartic proteinases have been characterized from seeds, flowers and leaves of a number of different species. The enzymes are generally either monomeric or heterodimeric, containing two peptides processed from the same precursor protein. The plant enzymes, like their mammalian and microbial counterparts, are active at acidic pH and inhibited by a class specific inhibitor pepstatin A. Plant aspartic proteinases are generally either secreted or targeted to the vacuolar/protein storage body compartment. The primary sequences of many of these enzymes have been determined and are very homologous with each other as well as with enzymes from mammalian and microbial origins. Plant aspartic proteinases, however, have a very unique plant specific region, which is not found in mammalian, microbial, or viral aspartic proteinases. The function of this region has not been elucidated. A role for these plant enzymes in protein processing or degradation has been proposed, however, more studies are required to confirm their in vivo functions. Recent intriguing results suggest possible roles for these enzymes in programmed cell-death of tissues and in pathogen resistance.  相似文献   

17.
The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.  相似文献   

18.
Sugar molecules as well as enzymes degrading them are ubiquitously present in physiological systems, especially for vertebrates. Polysaccharides have at least two aspects to their function, one due to their mechanical properties and the second one involves multiple regulatory processes or interactions between molecules, cells, or extracellular space. Various bacteria exert exogenous pressures on their host organism to diversity glycans and their structures in order for the host organism to evade the destructive function of such microbes. Many bacterial organism produce glycan-degrading enzymes in order to facilitate their invasion of host tissues. Such polysaccharide degrading enzymes utilize mainly two modes of polysaccharide-degradation, a hydrolysis and a beta-elimination process. The three-dimensional structures of several of these enzymes have been elucidated recently using X-ray crystallography. There are many common structural motifs among these enzymes, mainly the presence of an elongated cleft transversing these molecules which functions as a polysaccharide substrate binding site as well as the catalytic site for these enzymes. The detailed structural information obtained about these enzymes allowed formulation of proposed mechanisms of their action. The polysaccharide lyases utilize a proton acceptance and donation mechanism (PAD), whereas polysaccharide hydrolases use a direct double displacement (DD) mechanism to degrade their substrates.  相似文献   

19.
Hydroxynitrile lyases (HNLs) catalyze degradation of cyanohydrins to hydrogen cyanide and the corresponding ketone or aldehyde. HNLs can also catalyze the reverse reaction, i.e., synthesis of cyanohydrins. Although several crystal structures of S-selective hydroxynitrile lyases (S-HNLs) have been reported, it remains unknown whether and how dynamics at the active site of S-HNLs influence their broad substrate specificity and affinity. In this study, we analyzed the structure, dynamics and function of S-HNL from Baliospermum montanum (BmHNL), which has an α/β hydrolase fold. Two crystal structures of BmHNL, apo1 and apo2, were determined at 2.55 and 1.9 Å, respectively. Structural comparison between BmHNL (apo2) and S-HNL from Hevea brasiliensis with (S)-mandelonitrile bound to the active site revealed that hydrophobic residues at the entrance region of BmHNL formed hydrophobic interactions with the benzene ring of the substrate. The flexible structures of these hydrophobic residues were confirmed by a 15 ns molecular dynamics simulation. This flexibility regulated the size of the active site cavity, enabling binding of various substrates to BmHNL. The high affinity of BmHNL toward substrates containing a benzene ring was also confirmed by comparing the kinetics of BmHNL and S-HNL from Manihot esculenta. Taken together, the results indicated that the flexibility and placement of the residues are important for the broad substrate specificity of S-HNLs.  相似文献   

20.
The hydroxynitrile lyase (HNL) activity of nine defatted Prunus seeds was compared for catalyzing the addition of HCN to aromatic, heteroaromatic and α,β-unsaturated aldehydes. Although the conversion and enantiomeric excess (ee) of the corresponding cyanohydrins were both influenced by the HNL source and the chemical structure of the aldehyde, Prunus HNLs were all suitable for the enantioselective preparation of cyanohydrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号