首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclization of tetraenols 3 and 4 has been studied. The tetraenols were prepared as follows: alkylation of the lithium salt of 1-benzyloxy-3-butyne with the previously known trans-tosylates 19 and 20 gave the dienynes 21 and 22. Reduction with sodium in ammonia gave the trans,trans-trienols 25 and 26, which were used to alkylate, via the tosylates 27 and 28, the sodio salt of Hagemann's ester 7. Decarbethoxylation gave the tetraenones 29 and 30 which were converted with methyllithium to 3 and 4. Treatment of tetraenol 3 with trifluoroacetic acid in pentane at −78°C to −10°C gave tetracyclic diene 5 stereoselectively in 45% yield, along with 5% tricyclic triene 32 and a mixture of esters. The esters were reduced and eliminated, giving a mixture (25% yield based on 3) of 66% diene 5 and 34% triene 32. Tetraenol 3 was cyclized with stannic chloride in nitromethane at 22°C giving a 77% yield of a 4:1 mixture of 5 and 32. Treatment of tetraenol 4 with anhydrous formic acid followed by cleavage of the formate esters gave tetracyclic alcohol 6 (isolated in 9% yield) and a mixture of tricyclic trienes 36 and alcohols 37. Cyclization of 4 in trifluoroacetic acid led to larger amounts of tetracyclic diene 40. The structure and configuration (anti,trans,anti,trans) of the cyclization products, 5 and 6, were established by conversion of 6 into the dl ketone 38 and comparison with authentic d-38. Also d-38 was converted into authentic d-5 which was compared with the synthetic dl-5. The comparison substances were prepared as follows. Testosterone benzoate (41) was methylated at C-4, and the C-3 carbonyl group was removed by conversion to the acetate 44, followed by reductive cleavage of the allylic acetate with lithium in ethylamine. Oxidation of the C-17 alcohol gave the ketone 46, which was converted to the carbinolamine 49 by epoxidation with dimethylsulfonium methylide, followed by conversion to the hydroxyazide and reduction with lithium aluminum hydride. Nitrous acid deamination led to the d-homoketone d-38. Treatment of d-38 with methyllithium followed by dehydration led to a mixture of dienes from which d-5 was isolated.  相似文献   

2.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

3.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

4.
Addition of 2,2′-anhydro-[1-(3-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)uracil] (1) to excess 2-litho-1,3-dithiane (2)in oxolane at ?78° gave 2-(1,3-dithian-2-yl)-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)pyrimidinone (3), O2,2′-anhydro-5,6-di-hydro-6-(S)-(1,3-dithian-2-yl)-5′-O-trityluridine (4), and 2-(1,4-dihydroxybutyl)-1,3-dithiane (5) in yields of 15, 30, and 10% respectively. The structure of 3 was proved by its hydrolysis in acid to give 2-(1,3-dithian-2-yl)-4-pyrimidinone (6) and arabinose, and by desulfurization with Raney nickel to yield the known 2-methyl-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)-pyrimidinone (7). Detritylation of 3 without glycosidic cleavage could only be effected by prior acetylation to 1-(2,3-di-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)-2-(1,3-dithian-2-yl)-4(1H)-pyrimidinone (8) which, after treatment with acetic acid at room temperature for 65 h followed by the action of sodium methoxide gave 2-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyl-4(1H)-pyrimidinone (10) in 45% yield. Detritylation of 4 in boiling acetic acid gave 5,6-dihydro-6-(S)-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyluracil (12) and 3-[(S)-1-(1,3-dithian-2-yl)]propionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (13) in 10 and 90% yields, respectively. When 12 was kept in water or methanol for 7 days, quantitative conversion into 13 occurred. Acid hydrolysis of 12 afforded arabinose and 5,6-di-hydro-6-(1,3-dithian-2-yl)uracil (14), which was desulfurized with Raney nickel to the known 5,6-dihydro-6-methyluracil (15). Treatment of 13 with trifluoroacetic anhydride-pyridine yielded 77% of the cyano derivative 17. Similar dehydration of 3-(R)-1-methylpropionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxalidinone (18), obtained by desulfurization of 13, gave 60% of the nitrile 19. Hydrogenation of 19 over platinum oxide in acetic anhydride gave the acetamide derivative 20 in 95% yield. Nitrobenzoylation of 13 gave 3-[(S)-1-(1,3-dithian-2-yl)]cyanomethyl-3,5-di-O-p-nitrobenzoyl-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (22), which was converted in 37% yield by treatment with methyl iodide in dimethyl sulfoxide into the aldehyde 24, characterized as the semicarbazone 25. The purification of 5 and its characterization as 2-(1,4-di-O-p-nitrobenzoylbutyl)-1,3-dithiane (27) is described.  相似文献   

5.
The reaction of methyl 2,3,4,6-tetra-O-acetyl-1-O-trimethylsilyl-β- (5) and -α-d-glucopyranuronate (6) severally with the dimethyl or diethyl acetals of formaldehyde, bromoacetaldehyde, propionaldehyde, 3-benzyloxypropionaldehyde, 5-carboxypentanal, and 2-bromohexanal in the presence of catalytic amounts of trimethylsilyl trifluoromethanesulfonate at −78° gave the corresponding (1-alkoxyalkyl) α- and β-glycosides (acetal-glucopyranosiduronates) with retention of configuration at C-1 in yields of 41–91%. Instead of the dialkyl acetals, the corresponding aldehydes and alkyl trimethylsilyl ether can be used. Deacetylation gave the corresponding methyl (acetal-β- and -α-d-glucopyranosid)uronates in good yield. De-esterification of methyl [(1R)-1-methoxybutyl β-d-glucopyranosid]uronate with esterase gave the acetal-β-d-glucopyranosiduronic acid which was an excellent substrate for β-d-glucuronidase.  相似文献   

6.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

7.
The nitrilases from Fusarium solani O1 and Aspergillus niger K10 showed a broad substrate specificity for carbocyclic and nonaromatic heterocyclic amino nitriles, the preferred substrates being five-membered γ-amino nitrile (±)-1a, six-membered γ-amino nitriles (±)-3a, (±)-5a and (±)-6a, pyrrolidine-3-carbonitriles (±)-9a and (±)-10a as well as piperidine-4-carbonitriles 14a and 15a. Both enzymes showed a strong diastereopreference for cis- vs. trans-γ-amino nitriles. The electronic and steric effects of N-protecting groups affected the reactivity of the nitriles. Amides as by-products of the nitrilase-catalyzed reaction were produced from heterocyclic amino nitriles (±)-9a, (±)-10a, 14a and 15a by the A. niger enzyme but only from nitrile (±)-9a by the F. solani enzyme.  相似文献   

8.
The reaction of [RuCl3(2mqn)NO] (H2mqn=2-methyl-8-quinolinol) with 2-chloro-8-quinolinol (H2cqn) afforded cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 1), cis-1 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) (complex 2) and a 1:1 mixture of cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2mqn is trans to the NO) and cis-2 [RuCl(2cqn)(2mqn)NO] (the oxygen of 2cqn is trans to the NO) (complex 3). The reaction was compared with that of [RuCl3(2mqn)NO] with 8-quinolinol (Hqn) or 5-chloro-8-quinolinol (H5cqn). Photoirradiation reaction of complex 1 at room temperature in deaerated CH2Cl2 in the presence of NO gave trans-[RuCl(2cqn)(2mqn)NO] (the Cl is trans to the NO) and complex 2 with recovery of complex 1. The reaction was contrasted with that of cis-1 [RuCl(qn)(2mqn)NO] or cis-1 [RuCl(5cqn)(2mqn)NO]. The crystal structure of complex 1 was determined by X-ray diffraction. The reactions were examined under consideration of atomic charge of the phenolato oxygen in 8-quinolinol and its derivatives calculated at the restricted Hartree-Fock/6-311G** level.  相似文献   

9.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

10.
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β- -galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α- -galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

11.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

12.
2,3,5-Tri-O-benzyl-D-arabinofuranosyl bromide (4) was converted into 2,5-anhydro-3,4,6-tri-O-benzyl-D-glucononitrile (5), mixed with 20% of the D-manno epimer 6. The mixture was reduced to the amine 7, which via the N-nitrosoacetamide 10 afforded the 1-deoxy-l-diazo sugar 11. Dipolar addition to dimethyl acetylene-dicarboxylate afforded the C-nucleoside derivative, dimethyl 3-(2,3,5-tri-O-benzyl-α-β-D-arabinofuranosyl)pyrazole-4,5-dicarboxylate (20). Selective ammonolysis afforded the 4-ester-5-carboxamide 21, which was separated chromatographically into the α-(minor) and β-(major) anomers. Hydrazinolysis and Curtius reaction of the pair of 4-acid hydrazides (α-22 and β-22) afforded the anomeric 3-glycosyl-1H-pyrazolo-[4,3-d]pyrimidine-5,7-diones (α-24 and β-24). Hydrogenolytic debenzylation yielded the β-D)-arabino epimer (1) of oxoformycin B, and the α-D-arabino form 2. These anomeric C-nucleosides were distinguished by circular dichroism spectra that showed the same relationship as α- and β-D-arabino anomers of normal purine nucleosides.  相似文献   

13.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

14.
Derivatives of (S)-2-fluoro- -daunosamine and (S)-2-fluoro- -ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy- -glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-α- -glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α- -altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-α- -gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-β- -galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-α- -altropyranoside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H–19F coupling constants, in comparison with the reported effects of oxyge substituents.  相似文献   

15.
Five glycosides, 2-(trans-cinnamoyloxy-methyl)-1-butene-4-O-β-d-glucopyranoside (1), 4-(6′-O-trans-cinnamoyl)-(2-hydroxymethyl-4-hydroxy-butenyl-β-d-glucopyranoside (2), 6′′-O-trans-p-coumaroyl-(4-hydroxybenzoyl)-β-d-glucopyranoside (3), 6′-O-(4-methoxy-trans-cinnamoyl) α/β-d-glucopyranose (4) 6′-O-(4′′-methoxy-trans-cinnamoyl)-kaempferol-3-β-d-glucopyranoside (7) along with six known compounds, (+)-isolariciresinol 3a-O-β-d-glucopyranoside (8) (+)-lyoniresinol 3a-O-β-d-glucopyranoside (9), apigenin 7-O-β-d-glucopyranoside (10), quercetin 3-O-β-d-glucopyranoside (11), 6′-O-cinnamoyl-α/β-d-glucopyranose (6) 6’-O-p-coumaroyl-α/β-d-glucopyranose (5) were isolated from the whole plant of Spiraea canescens. Some of these compounds showed potent radical scavenging activity in relevant non-physiological assays. Their structures were determined by NMR spectroscopic and CID mass spectrometric techniques.  相似文献   

16.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

17.
《Carbohydrate research》1986,147(2):247-264
l-(1-13C, 5-2H)Arabinose (6D) and l-(2-13C, 5-2H)arabinose (8D) have been synthesized by degradation of 2,3-O-isopropylidene-α-l-rhamnofuranose (2) to l-(4-2H)erythrose (,D), with subsequent chain elongation to 6D plus l-(1-13C, 5-2H)ribose (7D), the latter being converted into 8D. Intermediates were identified by complete assignment of the 13C chemical shifts employing carbon-carbon and carbon-deuterium coupling constants, deuteration shifts, differential isotope-shifts, and deuterium spectra. The anomeric carbon atoms of 2 and 2,3-O-isopropylidene-l-(1-2H) erythrose (4D) gave only single 13C resonances, suggesting that these two compounds exists in only one major anomeric configuration, clarifying previously reported work. The synthesis of 2,3-O-isopropylidene-l-(1-2H)rhmanitol (3D) facilitated the assignment of the signals in the 13C spectra of the nondeuterated analog. Specific deuterium-enrichment and the observed carbon-deuterium coupling (1JC,D ∼22 Hz) not only served to identify the deuterated carbon atom unambiguously in 3 but also permitted assignment of closely spaced resonances. The deuterium spectrum of 2,3-O-isopropylidene-l-(1-2H)erythrofuranose (4D) showed only a single resonance, indicating preponderance of one anomer, in accord with the observation of a single C-1 resonance in the 13C spectrum.  相似文献   

18.
2-Acetamido-5-amino-2,5-dideoxy- -xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β- -glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β- -xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β- -xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β- -xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)- -xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)- -xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

19.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

20.
Treatment of methyl β-d-ribofuranoside with acetone gave methyl 2,3-O-isopropylidene-β-d-ribofuranoside (1, 90%), whereas methyl α-d-ribofuranoside gave a mixture (30%) of 1 and methyl 2,3-O-isopropylidene-α-d-ribofuranoside (1a). On oxidation, 1 gave methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (2), whereas no similar product was obtained on oxidation of 1a. Ethynylmagnesium bromide reacted with 2 in dry tetrahydrofuran to give a 1:1 mixture (95%) of methyl 6,7-dideoxy-2,3-O-isopropylidene-β-d-allo- (3) and -α-l-talo-hept-6-ynofuranoside (4). Ozonolysis of 3 and 4 in dichloromethane gave the corresponding d-allo- and l-talo-uronic acids, characterized as their methyl esters (5 and 6) and 5-O-formyl methyl esters (5a and 6a). Ozonolysis in methanol gave a mixture of the free uronic acid and the methyl ester, and only a small proportion of the 5-O-formyl methyl ester. Malonic acid reacted with 2 to give methyl 5,6-dideoxy-2,3-O-isopropylidene-β-d-ribo-trans-hept-5-enofuranosiduronic acid (7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号