首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless steel, and polystyrene in a simple system with constant nutrient flow that mimicked as closely as possible the conditions used in the current standard European disinfectant test (EN 1040). The biofilm that was formed on glass contained cell clumps and extracellular polysaccharides. The average surface coverage was 60%, and most (92%) of the biofilm cells were viable. Biofilm formation and biofilm disinfection in different experiments were reproducible. For biofilms exposed to BAC and hypochlorite the concentrations needed to achieve 4-log killing were 50 and 600 times higher, respectively, than the concentrations needed to achieve this level of killing with the European phase 1 suspension test cells. Our results show that a standardized disinfectant test for biofilm cells is a useful addition to the current standard tests.  相似文献   

2.
Abstract

Although disinfection procedures are widely implemented in food environments, bacteria can survive and present increased virulence/resistance. Since little is known about these phenomena regarding biofilms, this study aimed to investigate the effect of chemical disinfection on biofilm-derived cells of Salmonella Enteritidis. Using a reference strain (NCTC 13349) and a food isolate (350), biofilm susceptibility to benzalkonium chloride (BAC), sodium hypochlorite (SH) and hydrogen peroxide (HP) was evaluated and biofilms were exposed to sub-lethal concentrations of each disinfectant. Biofilm-derived cells were characterized for their biofilm forming ability, antibiotic resistance and expression of virulence-associated genes. Except for a few instances, disinfectant exposure did not alter antibiotic susceptibility. However, SH and HP exposure enhanced the biofilm forming ability of Salmonella Enteritidis NCTC 13349. After BAC and HP exposure, biofilm-derived cells presented a down-regulation of rpoS. Exposure to BAC also revealed an up-regulation of invA, avrA and csgD on Salmonella Enteritidis NCTC 13349. The results obtained suggest that biofilm-derived cells that survive disinfection may represent an increased health risk.  相似文献   

3.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

4.
AIMS: To evaluate both the antimicrobial activity and the effectiveness of a combination of sodium hypochlorite and hydrogen peroxide (Ox-B) for killing Pseudomonas aeruginosa ATCC 19142 cells and removing P. aeruginosa biofilms on aluminum or stainless steel surfaces. METHODS AND RESULTS: Pseudomonas aeruginosa biofilms were developed in tryptic soy broth containing vertically suspended aluminium or stainless steel plates. Biofilms were exposed to a mixed sodium hypochlorite and hydrogen peroxide solution as a sanitizer for 1, 5 and 20 min. The sanitizer was then neutralized, the cells dislodged from the test surfaces, and viable cells enumerated. Cell morphologies were determined using scanning (SEM) and transmission electron microscopy (TEM). Cell viability was determined by confocal scanning laser microscopy (CSLM). Biofilm removal was monitored by Fourier transform infrared (FTIR) spectrophotometry. Cell numbers were reduced by 5-log to 6-log after 1 min exposure and by 7-log after 5 min exposure to Ox-B. No viable cells were detected after a 20 min exposure. Treatment with equivalent concentrations of sodium hypochlorite reduced viable numbers by 3-log to 4-log after 1 min exposure and by 4-log to 6-log after 5 min, respectively. A 20 min exposure achieved a 7-log reduction. Hydrogen peroxide at test concentration treatments showed no effect. FTIR analysis of treated pseudomonad biofilms on aluminium or stainless steel plates showed either a significant reduction or complete removal of biofilm material after a 5 min exposure to the mixed sodium hypochlorite and hydrogen peroxide solution. SEM and TEM images revealed damage to cell wall and cell membranes. CONCLUSIONS: A combination of sodium hypochlorite and hydrogen peroxide effectively killed P. aeruginosa cells and removed biofilms from both stainless steel and aluminium surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant and/or biofilm remover of contaminated food processing equipment.  相似文献   

5.
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.  相似文献   

6.
Aims: To compare the susceptibility of a 3‐day‐old biofilm and planktonic Salmonella to disinfectants at different exposure times. We hypothesize that Salmonella biofilms are more resilient to disinfectants compared to planktonic Salmonella. Methods and Results: The susceptibility of planktonic cells to disinfectants was tested by a modified version of the Council of Europe suspension test EN 1276. Salmonella biofilms were formed using the Calgary Biofilm Device. Results show that 3‐day‐old Salmonella biofilms are less susceptible to the disinfectants benzalkonium chloride, chlorhexidine gluconate, citric acid, quaternary ammonium compounds, sodium hypochlorite (SH) and ethanol, compared to planktonic Salmonella. Surprisingly, the results also demonstrate that low concentrations of SH were more effective against a 3‐day‐old biofilm compared to high concentrations of SH. Conclusions: While all the disinfectants evaluated were able to reduce biofilm‐associated cells at concentrations and contact times sufficient to eliminate planktonic cells, there were still sufficient viable cells remaining in the biofilm to cause further contamination and potential infection. Significance and Impact of the Study: Protocols for the use of chemical disinfectants need to include biofilm susceptibility testing. There is a requirement for an effective and standardized tool for determining the susceptibility of biofilms to disinfectants.  相似文献   

7.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

8.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

9.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

10.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

11.
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v–1) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.  相似文献   

12.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

13.
Biofilm formation on surfaces has serious economic and environmental implications. Growth of biofilm within a water distribution system can lead to problems such as biocorrosion and biofouling accumulation. To prevent and control these occurrences, it is necessary to use suitable biocides to remove the biofilm and kill biofilm cells. In this study, the genera Actinobacillus, Branhamella, Bacillus, Micrococcus and Acinetobacter were isolated from biofilms formed on brass coupons exposed to a cooling water system. It was shown by the microtiter plate test that a mixed culture of the isolates and a single culture of Acinetobacter sp(2) produced high levels of biofilm formation. A microwell plate technique was applied for assessment of the ability of various biocides to remove and kill mixed-culture biofilm cells and Acinetobacter sp(2), the latter as a single-species biofilm with a high rate of biofilm production. The results showed that the mixed-culture biofilm cells had more resistance to removal and killing by some biocides, such as hydrogen peroxide and sulfathiazole, than the single-species biofilm cells (Acinetobacter sp(2)). Oxidising biocides, such as sodium hypochlorite and hydrogen peroxide, demonstrated a higher potential for biofilm removal and killing compared with non-oxidising biocides (sulfathiazole and glutaraldehyde).  相似文献   

14.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p>0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p<0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p<0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1-0.5%) and exposure period were noted (p<0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p>0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   

15.
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. We compared 48-h biofilm formation by N. meningitidis serogroup B strains NMB, MC58, C311 and isogenic mutants defective in capsule formation on SV-40 transformed human bronchial epithelial (HBE) cells in a flow cell. We demonstrated that strains NMB and NMB siaA-D were defective in biofilm formation over glass, and there was a partial rescue of biofilm growth for strain NMB on collagen-coated coverslips at 48 h. We demonstrated all three serogroup B strains form biofilms of statistically equivalent average height on HBE cells as their isogenic capsular mutants. Strain NMB also formed a biofilm of statistically equivalent biomass as the NMB siaA-D mutant on HBE cells at 6 and 48 h. These biofilms are significantly larger than biofilms formed over glass or collagen. Verification that strain NMB expressed capsule in biofilms on HBE cells was demonstrated by staining with 2.2.B, a monoclonal antibody with specificity for the serogroup B capsule. ELISA analysis demonstrated that strains MC58 and C311 also produced capsules during biofilm growth. These findings suggest that encapsulated meningococci can form biofilms on epithelial cells suggesting that biofilm formation may play a role in nasopharyngeal colonization.  相似文献   

16.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

17.
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.  相似文献   

18.
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.  相似文献   

19.
Ceftaroline (CPT) is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA). The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC) of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.  相似文献   

20.

 

Shed cells or disrupted parts of the biofilm may enter the circulation causing serious and very hard to treat biofilm-associated infections. The activity of antimicrobial agents against the shed cells/disrupted biofilms is largely unknown.

Methods

We studied the in vitro susceptibility of intact and disrupted biofilms of thirty clinical isolates of methicillin-resistant and methicillin–susceptible Staphylococcus aureus (MRSA and MSSA) and Staphylococcus epidermidis to vancomycin, quinupristin/dalfopristin, and linezolid and compared it to that of the suspended (planktonic) cells.

Results

Bacteria in the disrupted biofilms were as resistant as those in the intact biofilms at the minimum inhibitory concentrations of the antibiotics. At higher concentrations, bacteria in the disrupted biofilms were significantly (P < 0.001) less resistant than those in the intact biofilms but more resistant than the planktonic cells. Quinupristin/dalfopristin showed the best activity against cells of the disrupted biofilms at concentrations above MICs and vancomycin, at 500 and 1,000 μg/ml, was significantly more active against the biofilms of MRSA and S. epidermidis

Conclusion

The difficulty of treating biofilm-associated infections may be attributed not only to the difficulty of eradicating the biofilm focus but also to the lack of susceptibility of cells disrupted from the biofilm to antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号