首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid and its methyl ester are competitive inhibitors of Arthrobacter sialophilus neuraminidase with Ki = 1.4 × 10?6M and 4.8 × 10?5M, respectively. The Km for the substrate, N-acetylneuraminlactose, is 1.0 × 10?3M. These data, taken together with the conformation of these compounds, indicate that these compounds are transition-state analogs of the enzyme. These results also suggest that the substrate upon binding to neuraminidase is distorted to a conformation approaching that of a half-chair.  相似文献   

2.
A new glutathione S-transferase has been purified to homogeneity from 105,000 × g supernatant of Sprague-Dawley rat liver homogenates. The purified enzyme exhibited specific activities of approximately 1.8, and 0.12 μmoles. min?1. mg?1 toward 1-chloro 2,4-dinitrobenzene and cumene hydroperoxide respectively. The SDS gel electrophoresis data on subunit composition revealed that the new transferase is composed of two subunits with an identical Mr of 24,400 (Yα Family). Our invitro translation experiments with rat liver poly(A) RNAs and substrate specificity data suggest that this subunit is different from the previously reported Ya, Yb and Yc subunits of rat liver glutathione S-transferases. Comparatively, the new isozyme showed significant activity toward 1,2 epoxy-3-(P-nitrophenoxy)-propane, ethacrynic acid and P-nitrophenyl acetate, 0.4, 0.34 and 0.18 μ moles. min?1. mg?1 respectively.  相似文献   

3.
An acyl-CoA carboxylase, which catalyzes the carboxylation of acetylpropionyl-, and butyryl-CoA, has been isolated from the tapeworm Spirometramansonoides. The enzyme has an absolute requirement for ATP, Mg2+, and HCO3? and, in addition, requires K+ for full catalytic activity. The enzyme has been purified 50-fold by a combination of calcium phosphate gel adsorption, ion-exchange column chromatography, and gel filtration. In its substrate specificity, K+ requirement, molecular size, and antigenic behavior, the tapeworm enzyme is similar to the acyl-CoA carboxylase of another helminth— the free-living nematode Turbatrixaceti.  相似文献   

4.
The addition of glucagon (10?6 M) to an incubation mixture containing 32Pi and hepatocytes isolated from livers of rats fed ad libitum results in both a 3-fold increased incorporation of 32P into L-type pyruvate kinase and a decreased catalytic activity. The 32P incorporated into pyruvate kinase was covalently bound to the enzyme as evidenced by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In addition, exogenous cyclic AMP (10?3 M) stimulated the phosphorylation and the suppression of catalytic activity to a similar extent. On the other hand, insulin (10?7 M) had essentially no effect on the incorporation of 32P into pyruvate kinase or on its catalytic activity under the conditions used in this study. These results suggest that phosphorylation of pyruvate kinase invivo is stimulated by glucagon via cyclic AMP and cyclic AMP-dependent protein kinase and that the activity of the enzyme is, at least in part, regulated by a phosphorylation-dephosphorylation mechanism.  相似文献   

5.
A study of the sulfhydryl groups of rat brain hexokinase   总被引:1,自引:0,他引:1  
Rat brain hexokinase (ATP: d-hexose-6-phosphotransferase, EC 2.7.1.1) is rapidly inactivated by reaction with 5,5′-dithiobis-(2-nitrobenzoate). The inactivation follows monophasic first-order kinetics in either the absence of ligands (k = 0.641 min?1 at 25 °C) or in the presence of saturating levels of ATP (free or complexed with Mg2+) or P1; the inactivation rate is slightly increased (k ? 0.7 min ?1) in the presence of ATP or P1. In contrast, glucose and glucose-6-P markedly decrease the inactivation rate; inactivation in the presence of these ligands is biphasic, with two first-order rates (k ? 0.5 min?1 and 0.01 min?1) being distinguishable.The enzyme contains 14 sulfhydryl groups which react with 5,5′-dithiobis-(2-nitrobenzoate); reaction of these groups in the native enzyme is complete after 2 hr at 25 °C, or in approx 5 min with the urea or guanidine-denatured enzyme. In the native enzyme, three classes of sulfhydryl groups are distinguishable and are designated as F-, I-, or S-type based on their fast (k ? 0.7 min?1), intermediate (k ? 0.5-0.7 min?1), or slow (k ? 0.02 min?1 rates of reaction with 5,5′-dithiobis-(2-nitrobenzoate). The correlation of inactivation rates with the rates for reaction of the I-type sulfhydryls indicates that the I-type sulfhydryls include residues necessary for catalytic activity. The F-type residues are clearly not required for activity.The effects of ATP, P1, glucose, and glucose-6-P on the reactivity of the sulfhydryls have been determined. As in the absence of ligands, S-, I-, and F-type sulfhydryls could be distinguished. In the presence of saturating concentrations of these ligands, the F, I, and S classes of sulfhydryls contained respectively: with ATP, 1, 4, and 7 residues; with P1, 1, 3, and 7 residues; with glucose, 1, 2, and 5 residues; with glucose-6-P, 1, 2, and 1 residues. Comparison with rate constants for inactivation in the presence of these ligands again indicated that I-type sulfhydryls were particularly important in maintenance of enzyme activity. The present results indicate considerable similarity between the reactivity of the sulfhydryl residues in rat brain hexokinase and the sulfhydryls of the bovine brain enzyme [V. D. Redkar and U. W. Kenkare (1972), J. Biol. Chem., 247, 7576–7584].  相似文献   

6.
An ATPase is demonstrated in plasma membrane fractions of goldfish gills. This enzyme is stimulated by Cl? and HCO3?, inhibited by SCN?.Biochemical characterization shows that HCO3? stimulation (Km = 2.5 mequiv./l) is specifically inhibited in a competitive fashion by SCN? (Ki = 0.25 mequiv./l). The residual Mg2+-dependent activity is weakly is weakly affected by SCN?.In the microsomal fraction chloride stimulation of the enzyme occurs in the presence of HCO3? (Kmfor chloride = 1 mequiv./l); no stimulation is observed in the absence of HCO3?. Thiocyanate exhibits a mixed type of inhibition (Ki = 0.06 mequiv./l) towards the Cl? stimulation of the enzyme.Bicarbonate-dependent ATPase from the mitochondrial fraction is stimulated by Cl?, but this enzyme has a relatively weak affinity for this substrate (Km = 14 mequiv./l).  相似文献   

7.
In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone   总被引:8,自引:0,他引:8  
Ca2+-ATPase activity in human erythrocyte ghosts previously washed to remove endogenous thyroid hormone is stimulated invitro by physiologic concentrations of thyroxine (T4) and triiodothyronine (T3). Two- to three-fold increases (P <0.005) in Ca2+-ATPase activity occurred after 60–120 minutes' exposure of membranes to iodothyronines at concentrations of T4 and T3 of 10?8 M to 10?12 M. T4 was more active than T3 and its activity did not depend upon prior conversion to T3. The Ca2+-ATPase effect represents an extranuclear action of thyroid hormone in a human cell model.  相似文献   

8.
Veal heart ribonuclease P has an essential RNA component   总被引:14,自引:0,他引:14  
The activity of RNase P (EC 3.1.26.5) from veal heart can be abolished by pretreatment of the enzyme preparation with micrococcal nuclease, pancreatic RNase A, or RNase T1. This indicates that veal heart RNase P contains an RNA component essential for function of the enzyme as has also been shown for E. coli RNase P (1–3). Additionally, veal heart RNase P has a buoyant density in Cs2SO4 of 1.33 g/cm3, which is intermediate between that of protein and nucleic acid.  相似文献   

9.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

10.
T K Pradhan  E G Sander 《Life sciences》1973,13(12):1747-1752
Dihydroorotase from Zymobacteriumoroticum ss noncompetitively inhibited with respect to L-USA by a series of substituted sulfonamides which have the general structure, R1-SO2-NHR2. Values of Ki, determined from double reciprocal plots of 1/initial velocity versus 1/ [L-ureidosuccinate] are approximately 0.10 to 1.0 mM for the various sulfonamides tested. These data are compared to similar data for carbonic anhydrase which also requires either Zn++ or Co++ for catalytic activity.  相似文献   

11.
Binding of the chromogenic ligand p-nitrophenyl α-d-mannopyranoside to concanavalin A was studied in a stopped-flow spectrometer. Formation of the protein-ligand complex could be represented as a simple one-step process. No kinetic evidence could be obtained for a ligand-induced change in the conformation of concanavalin A, although the existence of such a conformational change was not excluded. The entire change in absorbance produced on ligand binding occurred in the monophasic process monitored in the stopped-flow spectrometer. The value of the apparent second-order rate constant (ka) for complex formation (ka = 54,000 s?1m? at 25 °C, pH 5.0, Γ/2 0.5) was independent of the protein concentration when the protein was in the range of 233–831 μm in combining sites and in excess of the ligand. The apparent first-order rate constant (k?a) for dissociation of the complex was obtained from the rate constant for the decomposition of the complex upon the addition of excess methyl α-d-mannopyranoside (k?a = 6.2 s?1 at 25 °C, pH 5.0, Γ/2 0.5). The ratio ka?a (0.9 × 104m?1) was in reasonable agreement with value of 1.1 ± 0.1 × 104m?1 determined for the equilibrium constant for complex formation by ultraviolet difference spectrometry. Plots of ln(kaT) and ln(kaT) vs 1T were linear (T is temperature) and were used to evaluate activation parameters. The enthalpies of activation for formation and dissociation of the complex are 9.5 ± 0.3 and 16.8 ± 0.2 kcal/mol, respectively. The unitary entropies of activation for formation and dissociation of the complex are 2.8 ± 1.1 and 1.3 ± 0.7 entropy units, respectively. These entropy changes are much less than those usually associated with substantial changes in the conformation of proteins.  相似文献   

12.
The longitudinal and transverse water proton relaxation rates of oxygenated and deoxygenated erythrocytes from both normal adults and individuals with sickle cell disease were measured as a function of temperature at two different frequencies. The simplest model which fits all of the data consists of three different environments for water molecules. The majority of the water (98%) has a correlation time indistinguishable from bulk water (3 × 10?11 sec). Secondly, there is a small amount of water (1.3–1.5%) present which has a correlation time of 2–4 × 10 ?9 sec and is apparently independent of the erythrocyte sample studied. Presumably this water is the hydration sphere around the hemoglobin molecules and its correlation time is significantly slower than bulk water. The third environment contains approximately 0.2% of the water present and has a correlation time≥ 10?7 sec. This third environment is considered tightly bound to the hemoglobin because the water proton correlation time is very similar to the expected rotational correlation time for the hemoglobin molecules. The value of the transverse relaxation rate, fb(T2b)?1, for the tightly bound water fraction decreases in oxy (SS), deoxy (AA), and oxy (AA) erythrocyte samples as the temperature is increased as expected for a rotational correlation time process. In dramatic contrast,fb (T2b)?1 increases almost linearly as the temperature is increased over the whole 4 ° to 37 °C temperature range in samples of deoxy (SS) erythrocytes. The observation suggests a continual increase in the formation of deoxyhemoglobulin S polymers rather than a sudden transition from a homogeneous solution of deoxyhemoglobin S molecules to a solid gel.  相似文献   

13.
Kinetic properties of rat hepatic prolactin receptors   总被引:1,自引:0,他引:1  
Binding of 125I-labelled ovine prolactin to female rat liver membranes underequilibrium conditions showed an apparent Kd of 200 pM, and a Hill coefficient of 1.0. The association rate was second order, with a rate constant K1, of 2.1 × 107, 1.4 × 107, 1.2 × 107 and 4 × 106 M?1. min?1 at 37, 30, 24 and 4° respectively. At 24° there were two components to the dissociation; a faster phase with K?1=1.26 × 10?2. min?1 (T12=55 minutes) and a slower phase with K?1=1.103 × 10?3. min?1. The apparent Kd (from K?1K1) was 1.05 nM for the faster phase and 87.5 pM for the slower phase. These data suggest that there is a conformational change following hormone binding which results in an increased receptor affinity, which effectively prevents release of bound hormone.  相似文献   

14.
Kinetic studies on the RNase T1-catalyzed transesterification of 12 dinucleoside monophosphates, Np1N2 (N1 = A, C, and U; N2 = A, C, G, and U) at pH 5, 25 °C, and 0.2 m ionic strength, revealed that the catalytic efficiency (kcatKm) for GpN substrates (H. L. Osterman, and F. G. Walz, Jr., 1978, Biochemistry, 17, 4142) was ~106-fold greater than corresponding ApNs and at least 108-fold greater than corresponding CpNs and UpNs. The catalytic activity with ApN substrates survives phenol extraction which indicates (along with other criteria) that it is intrinsic to RNase T1 and is not due to trace contamination by other nucleases. Circumstantial evidence is presented which suggests that homologous GpN and ApN substrates bind productively at different sites on the enzyme. The results of steady-state kinetic studies of RNase T1 with IpNs (N = C and U) were compared with those for GpNs and indicated that the primary effect of the guanine 2-NH2 group is to enhance substrate binding at the primary recognition site by ~2.6 kcal/mol. Values of (kcatKm) showed the order NpC > NpU (N = A, G, and I) which evidences the existence of a subsite for the leaving nucleoside group that prefers cytidine: interactions at this subsite are reflected in kcat rather than Km.  相似文献   

15.
The rhabdomeres of cephalopod photoreceptors, which are built up mainly of rhodopsin and phospholipid molecules, show a very high alkaline phosphatase activity. The enzyme has been partially characterized in purified rhodopsin vesicle fractions of the rhabdomeres by the following kinetic data: pH optimum 8.7; activation energy 9100 cal·m?1; Vmax = 2.5 μmol·min?1·mg?1; Km = 1.5·10?4M; its activity depends on Mg2+. There is good evidence that the alkaline phosphatase is a membrane-bound enzyme with receptor sites presumably located on the inside of the membrane. This enzyme has not been purified but its high activity compared to that of other known alkalin phosphatases (see Table I) indicates that each mirovillus, the structural unit of the rhabdomere, contains 1–20 enzyme molecules. This finding supports the hypothesis that the alkaline phosphatase is involved in the biochemical amplification process of excitation, or adaptation.  相似文献   

16.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in a significant (2–3-fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmaksing of a latent Mg2+-dependent Ca2+-stimulated ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+ and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 μM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 · 10?4M and 10?7 M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

17.
The initial membrane reaction in the biosynthesis of peptidoglycan is catalyzed by phospho-N-acetylmuramyl (MurNAc)-pentapeptide translocase (UDP-MurNAc-Ala-γ dGlu-Lys-dAla-dAla undecaprenyl phosphate phospho-MurN Acpentapeptide transferase). In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate with the uridine monophosphate moiety of UDP-MurN Ac-pentapeptide. Two distinct discontinuities are observed in the slopes of the Arrhenius plots of the exchange and transfer activities at 22 and 30°C for the enzyme from Staphylococcus aureus Copenhagen. Anisotropy measurements of perylene fluorescence and electron spin resonance measurements of N-oxyl-4′,4′-dimethyloxazolidine derivatives of 12-and 16-ketostearic acid intercalated into membranes from this organism define the lower (T1 = 16–22°C) and upper (Th = 30°C) boundaries of a phase transition. These values correlate with the discontinuities observed for the activity measurements. Thus, it is proposed that the physical state of the lipid micro-environment of phospho-MurN Ac-pentapeptide translocase has a significant effect on the catalytic activity of this enzyme.  相似文献   

18.
Vasoactive intestinal peptide (VIP), secretin, catecholamines and prostaglandin E1 (PGE1) in the presence of a cyclic nucleotide phosphodiesterase inhibitor stimulate the accumulation of cyclic AMP in two colorectal carcinoma cell lines (HT 29 and HRT 18) with subsequent activation of the cyclic AMP-dependent protein kinases. In HT 29 cells incubated without phosphodiesterase inhibitor, 10?9 M VIP promotes a rapid and specific activation of the low Km cyclic AMP phosphodiesterase (1.7-fold); at 25°C the effect is maintained for more than 15 min, while at 37°C the activity returns to basal value within 15 min. As shown by dose-response studies, VIP is by far the most effective inducer (Ka = 4 · 10?10M) of the cyclic AMP phosphodiesterase activity; partial activation of the enzyme is obtained by 3 · 10?7 M secretin, 10?5 M isoproterenol and 10?5 M PGE1; PGE2 and epinephrine are without effect. In HRT 18 cells VIP is less active (Ka = 2 · 10?9M) whereas 10?6 M PGE1, 10?6 M PGE2 and 10?5 M epinephrine are potent inducers of the phosphodiesterase activity. The positive cell response to dibutyryl-cyclic AMP further indicates that cyclic AMP is a mediator in the phosphodiesterase activation process. The incubation kinetics and dose response effects of the various agonists on the cyclic AMP-dependent protein kinase activity determined for both cell types in the same conditions show a striking similarity to those of phosphodiesterase. Thus coordinate regulation of both enzymes by cyclic AMP was observed in all incubation conditions.  相似文献   

19.
RNA (guanine-7) methyltransferase, partially purified from N.crassa mycelia, catalyzed the transfer of the methyl group from S-adenosylmethionine to the 5′ terminus of both N.crassa poly A(+) RNA and reovirus unmethylated mRNA. RNase T2 digestion of the invitro methylated poly A(+) RNA from N.crassa yielded the “cap” structures m 7G(5′)pppAp and m 7G(5′)pppGp in a ratio of 2:1 respectively. RNase T2 digestion of the invitro methylated reovirus mRNA yielded m 7G(5′)pppGp exclusively. The absence of mRNA 2′-0-methyltransferase activity in the enzyme preparation is consistent with the absence of 2′-0-methylation in N.crassa mRNA [Seidel, B. L. and Somberg, E. W. (1978) Arch. Biochem. Biophys. 187, 108–112]. This is the first isolation of an eucaryotic, cellular RNA (guanine-7) methyltransferase that has been shown to methylate homologous substrate.  相似文献   

20.
The esteroproteolytic enzyme, a serine protease from porcine pancreas, has been crystallized and characterized by X-ray diffraction. Two closely related crystal forms were observed. The unit cell dimensions of the first form are a = 59.2 A?, b = 96.4 A? and c = 47.4 A?, space group P21212 with one molecule (mol. wt 30,000) per asymmetric unit. The unit cell dimensions of the second form are a = 59.2 A?, b = 96.4 A? and c = 94.8 A?, space group P212121. Mercury derivatives of enzyme inhibitors were used to obtain multiple isomorphous heavy-atom substituents suitable for phase determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号