首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning electron microscopy of leaf trichomes of the forty two native species of oaks in eastern North America indicates five patterns of variability: 1) Eight trichome types are evident among the species and each species possesses a definite complement of trichome types. Certain trichomes are restricted to particular subgenera and series. 2) An obvious seasonal loss of trichomes occurs during leaf maturation. This loss may be both quantitative in terms of trichome density and qualitative in terms of trichome type. 3) There is an obvious difference between the adaxial and abaxial surfaces. The adaxial side of most oak leaves is dark green, lustrous, and glabrous or glabrate. The abaxial surface either remains pubescent, becomes glabrate or glabrous, or maintains trichomes along the midrib or in the axils of major secondary veins. There are also initial quantitative and qualitative trichome differences between the two sides. 4) Geographical and ecological variations are due in part to non-genetic ecophenic modifications, ecotypic differentiation, and random genetic differences not necessarily correlated with environmental conditions. Trichome types are considered to be less affected by environment than is trichome density. 5) Hybridization and introgression within a subgenus leads to localized variability. Trichomes of hybrids are usually a combination of the parental types. These five patterns of variation are predictable and appear to be held within rather narrow limits. The complement of foliar trichomes, therefore, is a reliable character in the taxonomy of the oaks.  相似文献   

2.
LOURO, R. P., MIGUENS, F. C. & MACHADO, R. D., 1992. Structure and development of stellate trichomes in Andradea ftoribunda Fr. Allem. (Nyctaginaceae). Trichomes occur on both faces of young leaves. They are peltate-stellate on the abaxial face, and comprise a stalk and radiating cells with a rudimentary central apex. On the adaxial face the trichomes arc stellate with a large apex comprising one to three cells. In both cases the stalk is formed by three to six cells of which the most distal may contain a tannoid substance. In the adult leaf only the abaxial surface exhibits stellate trichomes, with two to three celled stalks. The central region of radial cells is depressed. On the adaxial side the hairs are shed during maturation of the leaf.  相似文献   

3.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

4.
Jasmonates, including jasmonic acid and its derivatives such as methyl jasmonate (MeJA), are plant growth substances that control various responses. Jasmonates regulate leaf trichome density in dicotyledonous plants, but their effects on the trichome density of monocotyledonous plants, such as those in the Poaceae, remain unclear. In the present study we examined the effects of exogenous MeJA on the trichome density of Rhodes grass, which has three kinds of trichomes: macrohairs, salt glands, and prickles. Exogenous MeJA significantly increased the densities of macrohairs and salt glands on the adaxial and abaxial leaf surfaces and those of prickles on the adaxial leaf surface. Because exogenous MeJA significantly reduced the leaf area, we calculated the number of trichomes per 1000 epidermal cells to eliminate the effects of reduced leaf area. Exogenous MeJA significantly increased the number of macrohairs per 1000 epidermal cells on both adaxial and abaxial leaf surfaces, but it significantly decreased the number of salt glands per 1000 epidermal cells on both surfaces. Exogenous MeJA had no significant effects on the number of prickles per 1000 epidermal cells on either of the leaf surfaces. These results indicate that exogenous MeJA alters the trichome density by affecting leaf area and trichome initiation, and the effects of exogenous MeJA on trichome initiation differ among the various trichome types.  相似文献   

5.
The morphology and distribution of leaf trichomes of Tetradenia riparia were studied using light and scanning microscopy. Three morphologically distinct types of trichomes were observed on T. riparia leaf surfaces: glandular capitate (short and long stalked), peltate and non-glandular. The glandular and non-glandular trichomes were present in abundance on both the adaxial and abaxial surfaces. Young leaves were densely covered with trichomes; however, the density of trichomes decreases progressively with leaf maturity. This suggests that the trichomes are established early in leaf differentiation and their density decreases with leaf development and age.  相似文献   

6.
The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces.  相似文献   

7.
WEBB, M. E. & ALMEIDA, M. T., 1990. Micromorphology of the leaf epidermis in taxa of the Agropyron-Elymus complex (Poaceae). A comparative analysis by scanning electron microscopy was carried out on both leaf epidermes (adaxial and abaxial) of Elymus pychnanthus (Godr.) Meld, and Agropyron glaucum Roemer & Schultes.
The adaxial epidermes of E.pychnanthus and A. glaucum are similar in the position and the shape of the long cells, silica bodies and costal and papillate prickles. They differ in the higher number of silica cells in E. pychnanthus and in the presence of intercostal hooks in A. glaucum.
The abaxial epidermes of both species are similar in the shape of interstomatal cells, silica bodies and papillate prickles. They differ in the distribution of the stomata and in the contact zones of the long cells. Elymus pychnanthus and A. glaucum differ also in the trichomes situated along the margins of the leaf blade.
These micromorphological differences, especially those of the abaxial epidermis, are useful taxonomic features.  相似文献   

8.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

9.
冬凌草腺毛的形态学及组织化学研究   总被引:1,自引:0,他引:1  
利用光学显微镜对药用植物冬凌草地上部分腺毛的形态、分布和组织化学进行了研究。结果表明:(1)冬凌草的叶表皮有3种形态显著不同的毛,即非腺毛、盾状腺毛和头状腺毛;盾状腺毛和头状腺毛均具1个基细胞、1个柄细胞和头部;成熟的盾状腺毛的头部一般由4个分泌细胞组成,而头状腺毛头部由2个分泌细胞组成。(2)组织化学鉴定结果显示:2种腺毛中均含有黄酮类成分,盾状腺毛中还含有单萜、倍半萜等萜类成分;冬凌草甲素可能只存在于盾状腺毛中,但需要更直接的证据证明。研究认为,高密度的盾状腺毛可以作为筛选冬凌草高甲素含量品种的一项重要依据。  相似文献   

10.
Trichomes have been implicated as a mechanism which can confer resistance to both plant pests and drought. A study was conducted to provide information regarding genetic variability for trichome distribution and density among three diverse dry bean (Phaseolus vulgaris L.) cultivars, and to characterize the types of trichomes present among the cultivars. Trichomes on the leaf surfaces were micrographed with a scanning electron microscope (SEM) and counted using a stereomicroscope on both the abaxial and adaxial leaf surfaces of the cultivars ‘Bill Z’, ‘Pompadour Checa’ and ‘Diacol Calima’. Straight, hooked, and glandular trichomes were observed on the leaf surfaces of each cultivar. SEM micrographs are presented for the leaf surfaces of each cultivar and trichome type. The abaxial leaf surface had more straight trichomes than the adaxial leaf surface for ‘Pompadour Checa’ and ‘Diacol Calima’, however ‘Bill Z’ had more on the adaxial surface. The opposite relationship existed among the cultivars and leaf surfaces for the hooked trichomes.  相似文献   

11.
J C Chien  I M Sussex 《Plant physiology》1996,111(4):1321-1328
In wild-type (WT) Columbia and Landsberg erecta ecotypes of Arabidopsis thaliana (L.) Heynh., trichomes are present on the adaxial surfaces of all rosette leaves but are absent from the abaxial surfaces of the first-formed leaves. We have determined that both long-day (LD) photoperiod and gibberellin (GA) stimulate trichome formation. WT plants grown in LD conditions produce the first abaxial trichome on earlier leaves than plants grown in short-day (SD) conditions. Photoperiod sensitivity of abaxial trichome formation on WT plants develops gradually over time, reaching the maximum sensitivity about 24 d after germination. Application of gibberellic acid to WT plants growing in SD conditions accelerates the onset of abaxial trichomes. Conversely, application of 20 to 80 mg L-1 paclobutrazol, a GA biosynthesis inhibitor, to wild-type plants suppresses trichome initiation on the abaxial epidermis. The GA-deficient mutants ga1-5 and ga4-1 and the GA-insensitive mutant gai-1 exhibit delayed onset of abaxial trichomes when grown in LD conditions. The null mutant ga1-3 produces completely glabrous leaves when grown in SD conditions. Application of gibberellic acid to glabrous ga1-3 plants consistently induces earlier formation of trichomes on the adaxial epidermis than on the abaxial epidermis, demonstrating a difference between the adaxial and abaxial surfaces in their response to GA with regard to trichome formation.  相似文献   

12.
13.
Although anthocyanin coloration in lower (abaxial) leaf cells has been documented for numerous species, the functional significance of this character has not been comprehensively investigated according to habitat or leaf orientation. Here, we demonstrate that abaxial anthocyanin may function as a photoprotectant, similarly to its purported role in upper (adaxial) cells, in leaves vulnerable to high irradiance incident on abaxial surfaces. Spectral scans were derived for Galax urceolata leaves with the following phenotypes: abaxial or adaxial anthocyanin only, abaxial and adaxial anthocyanin, and no anthocyanin. To determine whether anthocyanins conferred protection from photoinhibition, maximum photosystem II efficiencies of red (anthocyanic) and green (acyanic) surfaces were compared during and after exposure to photoinhibitory conditions. Leaves were either positioned with their adaxial surfaces facing the light source or inverted to expose abaxial surfaces. Spectral scans showed increased absorptance of 500-600 nm wavelengths by red surfaces (consistent with the absorbance spectrum of anthocyanin), regardless of whether that surface was abaxial or adaxial. Leaves with anthocyanin in either illuminated surface were also photoinhibited less than leaves lacking anthocyanin in that surface. These results suggest that anthocyanic layers reduce absorbed sunlight in the mesophyll not only for adaxial surfaces, but also for the abaxial. Adaxial/abaxial anthocyanin plasticity may therefore be adaptive in high-light environments or during light-sensitive developmental stages where leaf orientation and/or substrate albedo are variable.  相似文献   

14.
The morphology and anatomy of the labellar epidermal cells and the way in which they are arranged are described in an attempt to locate and characterize the osmophore in Ophrys fusca and O. lutea. The micromorphology of the labellum of these two species is similar. Four types of epidermal cells are present on the adaxial surface of the labellum. Long unicellular trichomes with straight tips cover the basal region of the labellum, whereas short unicellular trichomes with polygonal flattened bases form the reflective median speculum. The apical region of the labellum possesses a villous indumentum of long acuminate trichomes with bent or sinuate tips. Large smooth-walled, dome-shaped papillae occur on the margins and on the distal region of the abaxial surface of the labellum. These remarkable papillae have high polarity; the protoplasm at the apex of each cell contains several small vacuoles, while a prominent nucleus surrounded by numerous hypertrophied amyloplasts occurs at the opposite end of the cell. Positive reactions to Vogel's staining test and to Sudan black B enabled us to conclude that the osmophores of both species are composed of these peculiar secretory epidermal cells and by two or three subsecretory layers of parenchyma cells.  相似文献   

15.
In 1991 a field experiment was established in subarctic heathland at Abisko (68°35'N, 18°82'E), northern Sweden, to investigate the effects of enhanced UV-B (280–315 nm) radiation, simulating 15% ozone depletion, on plants in their natural environment. Leaves of the four dominant dwarf shrubs, the deciduous Vaccinium myrtillus L. and V. uliginosum L. and the evergreen V. vitis-idaea L. and Empetrum hermaphroditum Hagerup were examined after 7 years of UV-B treatment. SEM and ESEM were used to visualize surface features and to determine trichome density. Multiphoton laser scanning microscopy showed that UV-B absorbing compounds were localized in the trichomes of all species. Trichomes varied in size, number and distribution between the species. Enhanced UV-B reduced adaxial trichome density significantly (by approximately 25%) in only one species, V. uliginosum . This effect could be of importance for the UV-B absorbing potential of the adaxial epidermis of V. uliginosum . Epicuticular wax structures were found only on the abaxial surface of V. uliginosum and were unaffected by enhanced UV-B. The cuticular surfaces of all other species were smooth and featureless. Leaf thickness, adaxial and abaxial cuticle thickness varied between the species although there was no apparent effect of enhanced UV-B. It is concluded that long-term enhancement of UV-B has an effect on adaxial trichome density in V. uliginosum , but that there is no general effect on leaf morphology of the other species.  相似文献   

16.
栎属青冈亚属(壳斗科)的叶表皮研究   总被引:15,自引:1,他引:15  
利用光镜和扫描电镜观察了栎属青冈亚属Quercus subgen. Cyclobalanopsis 48种植物的叶表皮,尤以对叶下表皮的毛被特征观察较为仔细。共观察到8种不同类型的叶表皮毛:单列毛、单毛、乳突、星状毛、溶和星状毛、具柄束毛、多出毛和水母状毛。其中乳突在青冈亚属中较常见,而在壳斗科其他属中仅在石栎属 Lithocarpus 少数种类中有报道;水母状毛首次在壳斗科中发现。毛被可能遵循以下的演化规律:乳突→单毛→星状毛;星状毛依照从简单→复杂的演化途径,分化出各种形态各异和结构复杂的毛系。初步讨论了毛被以及叶表皮其他特征(如毛基细胞和表皮细胞的形态、气孔的类型和密度等)的分类和系统学意义。  相似文献   

17.

Main conclusion

Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces. The functional significance of this color pattern in leaves is poorly understood. Here, we test the hypothesis that abaxial anthocyanins protect leaves of understory plants from photo-oxidative stress via light attenuation during periodic exposure to high incident sunlight in the forest understory, without interfering with sunlight capture and photosynthesis during shade conditions. We utilize a cultivar of Colocasia esculenta exhibiting adaxial and abaxial anthocyanin variegation within individual leaves to compare tissues with the following color patterns: green adaxial, green abaxial (GG), green adaxial, red abaxial (GR), red adaxial, green abaxial (RG), and red adaxial, red abaxial (RR). Consistent with a photoprotective function of anthocyanins, tissues exhibited symptoms of increasing photoinhibition in the order (from least to greatest): RR, RG, GR, GG. Anthocyanic tissues also showed symptoms of shade acclimation (higher total chl, lower chl a/b) in the same relative order. Inconsistent with our hypothesis, we did not observe any differences in photosynthetic CO2 uptake under shade conditions between the tissue types. However, GG and GR had significantly (39 %) higher photosynthesis at saturating irradiance (A sat) than RG and RR. Because tissue types did not differ in nitrogen content, these patterns likely reflect differences in resource allocation at the tissue level, with greater nitrogen allocated toward energy processing in GG and GR, and energy capture in RG and RR (consistent with relative sun/shade acclimation). We conclude that abaxial anthocyanins are likely advantageous in understory environments because they provide some photoprotection during high-light exposure, but without the cost of decreased A sat associated with adaxial anthocyanin-induced shade syndrome.  相似文献   

18.
Symbiotic leaf-nodule bacteria in nodulated members of Rubiaceae live in mucilage secreted by colleters located on stipules within buds. These differ from colleters on most nodule-free species. This study was undertaken to examine buds of Ardisia and the related monotypic Amblyanthus of Myrsinaceae to see if nodulated species had secretory structures dissimilar from those of nodule-free species. Buds removed from herbarium specimens (61 species) and live plants (3 species) were paraffin-sectioned. Diverse trichome forms occur, including dimorphism between adaxial and abaxial trichomes in some species. Species within each subgenus were arranged according to trichome form: peltate scale, irregularly capitate, capitate, sessile capitate, bicellular capitate, and uniseriate. Only seven Ardisia species (all in subgenus Crispardisia, widely assumed to have bacteria in marginal leaf nodules of all 30 species) have short-lived trichomes bearing one or more elongate, swollen, distal cells that appear to be secretory cells. These trichomes are analogous to the dendroid or brushlike colleters of nodulated Rubiaceae. Druses occur in most subgenera and this appears to be by far the most predominant crystal type m Ardisia.  相似文献   

19.
Plant lateral organs, such as leaves, have three primary axes of growth–proximal‐distal, medial‐‐lateral and adaxial‐abaxial (dorsal‐ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD‐ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial‐abaxial polarity. In addition, lateral and proximal‐distal growth of most lateral organs is reduced in the mwp1‐R mutant, supporting a role for the adaxial‐abaxial boundary in promoting growth along both axes. We propose that the adaxial‐abaxial patterning mechanism has been co‐opted during evolution to generate diverse organ morphologies. genesis 48:416–423, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Photosynthesis and associated signalling are influenced by the dorso-ventral properties of leaves. The degree of adaxial/abaxial symmetry in stomatal numbers, photosynthetic regulation with respect to light orientation and the total section areas of the bundle sheath (BS) cells and the surrounding mesophyll (M) cells on the adaxial and abaxial sides of the vascular bundles were compared in two C4[ Zea mays (maize) and Paspalum dilatatum ] and one C3[ Triticum turgidum (Durum wheat)] monocotyledonous species. The C3 leaves had a higher degree of dorso-ventral symmetry than the C4 leaves. Photosynthetic regulation was the same on each side of the wheat leaves, as were stomatal numbers and the section area of the BS relative to that of the M cells (BS/M section area ratio). In contrast, photosynthetic regulation in maize and P. dilatatum leaves showed a marked surface-specific response to light orientation. Compared to the adaxial sides of the C4 monocotyledonous leaves, the abaxial surfaces had more stomata and the BS/M section area ratio was significantly higher. Differences in dorso-ventral structure, particularly in Kranz anatomy, serve not only to maximize photosynthetic capacity with respect light orientation in C4 monocotyledonous leaves but also allow adaxial and abaxial-specific signalling from the respective M cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号