首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将蓝舌病毒(BTV)13型S7与L3基因同时插入杆状病毒双表达载体pEastBacDual,获得重组杆状病毒rvBacBTVP37。该病毒在昆虫细胞中同时高水平表达BTV13 VP3与VP7蛋白,可以高效自动装配出20面体的60 ̄70nm空心颗粒。分析表明,所获颗粒为空心的BTV核心样颗粒(CLP),其成分为VP3与VP7,不含BTV其它任何蛋白与核酸。这种装配需要VP3与VP7的共同参与,二者缺  相似文献   

2.
T J French  P Roy 《Journal of virology》1990,64(4):1530-1536
The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.  相似文献   

3.
T Urakawa  D G Ritter    P Roy 《Nucleic acids research》1989,17(18):7395-7401
The bluetongue virus core particles have been shown to contain an RNA-directed RNA polymerase (1). To identify the protein responsible for the virion RNA polymerase activity, the complete 3.9 Kb DNA clone representing the largest RNA segment 1 (L1) of bluetongue virus (BTV-10) was placed under control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV). The derived recombinant virus was used to infect Spodoptera frugiperda cells. As demonstrated by stained polyacrylamide gel electrophoresis and by the use of bluetongue virus antibody, infected insect cells synthesized the largest protein of BTV-10 (VP1, 150 k Da). Antibody raised in rabbit to recombinant VP1 protein recognized bluetongue virus VP1 protein. The recombinant virus infected cell lysate had significantly inducible levels of RNA polymerase enzymatic activity as determined by a poly (U)-oligo (A) polymerase assay. The availability of enzymatically active bluetongue virus RNA polymerase provides a system in which we can precisely delineate the role this protein plays in the regulation of bluetongue replication.  相似文献   

4.
《Gene》1997,190(1):119-129
The baculovirus expression vector is a eukaryotic DNA viral vector for the cloning and expression of foreign genes in cultured lepidopteran insect cells and insects. It has become an important tool for the large-scale production of recombinant proteins for a variety of applications including the structure-function analysis of genes and their gene products. We have developed a number of baculovirus multigene expression vectors and utilized these to understand the assembly process of multicomponent capsid structures of large viruses such as bluetongue virus (BTV), a member of the Orbivirus genus within the family Reoviridae. BTV is some 810 Å in diameter and comprised of two protein shells containing four major proteins, VP2, VP5, VP7 and VP3, surrounding a genome of ten double-stranded RNA segments and three minor proteins (VP2, VP4 and VP6). BTV is the etiological agent of a sheep disease that is sometimes fatal in certain parts of the world (e.g., Africa, Asia, and the Americas). Using baculovirus multigene vectors, we have co-expressed various combinations of BTV genes in insect cells and produced structures that mimic the various stages of BTV assembly. For example, co-expressed VP3 and VP7 form BTV core-like particles, while co-expressed VP2, VP5, VP7 and VP3 form BTV virus-like particles. Using deletion, point and domain switching analyses of each protein, we have been able to identify certain sequences in the VP7 and VP3 proteins that are essential for the assembly of core-like particles. These expression and biochemical studies have been complemented by collaboration studies using cryoelectron microscopy and image processing analyses to provide the three-dimensional structure of the expressed particles. In addition and with other associates, we have used X-ray crystallography of VP7 to deduce its atomic structure. Extensive studies on the immune responses elicited by these self-assembled particles, and chimeric derivatives involving various foreign antigens, have been carried out. Finally, using as little as 10 μg of the self-assembled virus-like particles, we have shown that they can confer long-lasting protection in sheep against BTV.  相似文献   

5.
Hassan SS  Roy P 《Journal of virology》1999,73(12):9832-9842
Segment 2 of bluetongue virus (BTV) serotype 10, which encodes the outer capsid protein VP2, was tagged with the S-peptide fragment of RNase A and expressed by a recombinant baculovirus. The recombinant protein was subsequently purified to homogeneity by virtue of the S tag, and the oligomeric nature of the purified protein was determined. The data obtained indicated that the majority of the protein forms a dimer and, to a lesser extent, some trimer. The recombinant protein was used to determine various biological functions of VP2. The purified VP2 was shown to have virus hemagglutinin activity and was antigenically indistinguishable from the VP2 of the virion. Whether VP2 is responsible for BTV entry into permissive cells was subsequently assessed by cell surface attachment and internalization studies with an immunofluorescence assay system. The results demonstrated that VP2 alone is responsible for virus entry into mammalian cells. By competition assay, it appeared that both VP2 and the BTV virion attached to the same cell surface molecule(s). The purified VP2 also had a strong affinity for binding to glycophorin A, a sialoglycoprotein component of erythrocytes, indicating that VP2 may be responsible for BTV transmission by the Culicoides vector to vertebrate hosts during blood feeding. Further, by various enzymatic treatments of BTV-permissive L929 cells, preliminary data have been obtained which indicated that the BTV receptor molecule(s) is likely to be a glycoprotein and that either the protein moiety of the glycoprotein or a second protein molecule could also serve as a coreceptor for BTV infection.  相似文献   

6.
Bluetongue virus core protein VP6 is an ATP hydrolysis dependent RNA helicase. However, despite much study, the precise role of VP6 within the viral capsid and its structure remain unclear. To investigate the requirement of VP6 in BTV replication, we initiated a structural and biological study. Multinuclear nuclear magnetic resonance spectra were assigned on his-tagged full-length VP6 (329 amino acid residues) as well as several truncated VP6 variants. The analysis revealed a large structured domain with two large loop regions that exhibit significant conformational exchange. One of the loops (amino acid position 34–130) could be removed without affecting the overall fold of the protein. Moreover, using a BTV reverse genetics system, it was possible to demonstrate that the VP6-truncated BTV was viable in BHK cells in the absence of any helper VP6 protein, suggesting that a large portion of this loop region is not absolutely required for BTV replication.  相似文献   

7.
获得稳定、高效的具有良好抗原性的蓝舌病毒(Bluetongue virus,BTV)vp7基因重组抗原。将BTV编码群特异性抗原VP7的S7基因片段克隆至pMD18-T质粒载体中,构建S7克隆重组质粒,进行核苷酸序列分析。与已报道的多株BTV编码VP7的基因比较后发现,所测定毒株的核苷酸序列与BTV10型的S7基因同源性高达98.7%,推测的氨基酸同源性为99.3%,证实为BTV的S7基因。然后亚克隆插入pBAD/Thio TOPO表达载体,转化LGM194细胞,经抗性培养、PCR、限制性内切酶分析、测序鉴定,筛选获得BTV S7基因片段正向插入、有正确读码框的阳性克隆,成功构建了BTV群特异性抗原VP7的重组表达载体。经L-araboinose诱导表达,可稳定、高效地表达VP7蛋白抗原。SDS-PAGE、ELISA试验表明,表达蛋白为融合蛋白,具有反应原性,分子量约54.5kD,重组蛋白的获得率为1.52mg/g湿菌,其表达产量约占菌体总蛋白的12%左右,相当于93.5mg/L菌液。融合蛋白中含有BTV VP7特异性蛋白抗原,可作为c-ELISA包被抗原,为蓝舌病的免疫血清学诊断试剂的制备和分子生物学研究打下了坚实基础。  相似文献   

8.
Expression of rotavirus VP2 produces empty corelike particles.   总被引:26,自引:20,他引:6       下载免费PDF全文
The complete VP2 gene of bovine rotavirus strain RF has been inserted into the baculovirus transfer vector pVL941 under the control of the polyhedrin promoter. Cotransfection of Spodoptera frugiperda 9 cells with wild-type baculovirus DNA and transfer vector DNA led to the formation of recombinant baculoviruses which contain bovine rotavirus gene 2. Infection of S. frugiperda cells with this recombinant virus resulted in the production of a protein similar in size and antigenic properties to the authentic rotavirus VP2. The protein binds double-stranded RNA and DNA in an overlay protein blot assay. Expressed VP2 assembles in the cytoplasm of infected cells in corelike particles 45 nm in diameter. These corelike particles were purified by sucrose gradient centrifugation and found to be devoid of nucleic acid. Coexpression of VP2 and VP6 from heterologous rotavirus strains (bovine and simian) resulted in the formation of single-shelled particles. These results definitively show the existence of an innermost protein shell in rotavirus which is formed independently of other rotavirus proteins. These results have implications for schemes of rotavirus morphogenesis.  相似文献   

9.
Bluetongue virus (BTV) is an arthropod-borne virus transmitted by Culicoides species to vertebrate hosts. The double-capsid virion is infectious for Culicoides vector and mammalian cells, while the inner core is infectious for only Culicoides-derived cells. The recently determined crystal structure of the BTV core has revealed an accessible RGD motif between amino acids 168 to 170 of the outer core protein VP7, whose structure and position would be consistent with a role in cell entry. To delineate the biological role of the RGD sequence within VP7, we have introduced point mutations in the RGD tripeptide and generated three recombinant baculoviruses, each expressing a mutant derivative of VP7 (VP7-AGD, VP7-ADL, and VP7-AGQ). Each expressed mutant protein was purified, and the oligomeric nature and secondary structure of each was compared with those of the wild-type (wt) VP7 molecule. Each mutant VP7 protein was used to generate empty core-like particles (CLPs) and were shown to be biochemically and morphologically identical to those of wt CLPs. However, when mutant CLPs were used in an in vitro cell binding assay, each showed reduced binding to Culicoides cells compared to wt CLPs. Twelve monoclonal antibodies (MAbs) was generated using purified VP7 or CLPs as a source of antigen and were utilized for epitope mapping with available chimeric VP7 molecules and the RGD mutants. Several MAbs bound to the RGD motif on the core, as shown by immunogold labeling and cryoelectron microscopy. RGD-specific MAb H1.5, but not those directed to other regions of the core, inhibited the binding activity of CLPs to the Culicoides cell surface. Together, these data indicate that the RGD motif present on BTV VP7 is responsible for Culicoides cell binding activity.  相似文献   

10.
T Urakawa  P Roy 《Journal of virology》1988,62(11):3919-3927
Bluetongue virus (BTV) forms tubules in mammalian cells. These tubules appear to be composed of only one type of protein, NS1, a major nonstructural protein of the virus. To obtain direct evidence for the origin of the tubules, the complete M6 gene of BTV serotype 10 was inserted into the baculovirus transfer vector pAcYM1, so that it was under the control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus. After cotransfection of Spodoptera frugiperda cells with wild-type A. californica nuclear polyhedrosis virus DNA in the presence of recombinant transfer vector DNA, polyhedrin-negative baculoviruses were recovered. When S. frugiperda cells were infected with one of the derived recombinant viruses, a protein similar in size and antigenic properties to the authentic BTV NS1 protein was made (representing ca. 50% of the stained cellular proteins). The protein reacted with BTV antibody and formed numerous tubular structures in the cytoplasm of S. frugiperda cells. The tubular structures have been purified to homogeneity from infected-cell extracts by gradient centrifugation. By enzyme-linked immunosorbent assay, the recombinant virus antigen has been used to identify antibodies to five United States BTV serotypes in infected sheep sera, indicating the potentiality of the expressed protein as a group-reactive antigen in the diagnosis of BTV infections.  相似文献   

11.
Baculovirus multiple gene transfer vectors pAcAB3 and pAcAB4 have been developed to facilitate the insertion of three or four foreign genes respectively into the Autographa californica nuclear polyhedrosis virus (AcNPV) genome by a single co-transfection experiment. The pAcAB3 vector contains a polyhedrin promoter and two p10 promoters on either side of the polyhedrin promoter but in opposite orientations. The pAcAB4 vector has an additional polyhedrin promoter in opposite orientation to the first copy that is in juxtaposition to the first p10 promoter. Each of these derived vectors (pAcAB3, pAcAB4) have been used for the simultaneous expression of three or four bluetongue virus (BTV) genes respectively. When Spodoptera frugiperda cells were infected with the recombinant virus (AcBT-3/2/7/5) expressing the four major structural genes of BTV, double-capsid, virus-like particles consisting of VP2, VP3, VP5 and VP7 of BTV were assembled.  相似文献   

12.
T J French  J J Marshall    P Roy 《Journal of virology》1990,64(12):5695-5700
Bluetongue is a disease of ruminants. The etiologic agent is bluetongue virus (BTV), a gnat-transmitted member of the Orbivirus genus of the Reoviridae. The virus has a genome of 10 double-stranded RNA species L1 to L3, M4 to M6, S7 to S10). The L2 and M5 genes of BTV which encode the outer capsid proteins VP2 and VP5, respectively, were inserted into a recombinant baculovirus downstream of duplicated copies of the baculovirus polyhedrin promoter. Insect cells coinfected with this virus plus a recombinant baculovirus expressing the two major core proteins VP3 and VP7 of BTV (T.J. French and P. Roy, J. Virol. 64:1530-1536, 1990) synthesized noninfectious, double-shelled, viruslike particles. When purified, these particles were found to have the same size and appearance as authentic BTV virions and exhibited high levels of hemagglutination activity. Antibodies raised to the expressed particles contained high titers of neutralizing activity against the homologous BTV serotype. The assembly of these bluetongue viruslike particles after the simultaneous expression of four separate proteins is indicative of the potential of this technology for the production of a new generation of viral vaccines and for the study of complex, multiprotein structures.  相似文献   

13.
E Hayama  J K Li 《Journal of virology》1994,68(6):3604-3611
Heterologously expressed VP6 and truncated VP6 proteins of bluetongue virus (BTV) serotype 11 purified to near homogeneity were used for structure and function analyses. The yield of the expressed VP6 was host cell dependent. Six antigenic epitopes of VP6 of BTV were identified and mapped by immunoblot analyses and enzyme-linked immunosorbent assay with oligoclonal antibodies. These determinants were surface accessible and conserved among the cognate VP6 proteins of five U.S. BTV serotypes. The amino acid sequences and sizes of these six antigenic epitopes were determined, and their precise locations were also mapped and confirmed by deletion analyses. The nucleic acid binding activities of VP6, confirmed by electrophoretic mobility shift assay, were concentration dependent. The binding activities and affinities of the purified expressed VP6 protein towards double-stranded RNA and double-stranded DNA were similar. Two domains of VP6, corresponding to three of the six antigenic epitopes, were responsible for the nucleic acid binding activities and have been mapped within 28 amino acids near the middle and 11 residues near the carboxyl terminus of VP6 by electrophoretic mobility shift assay and deletion mutant analyses. Synthetic oligopeptides corresponding to these three regions also exhibited similar concentration-dependent nucleic acid binding activities.  相似文献   

14.
The hemagglutinin of influenza (fowl plague) virus was expressed in larvae of Heliothis virescens by using recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) as a vector. Animals were infected with the recombinant virus either by parenteral injection or by feeding. For oral uptake, recombinant virus occluded in polyhedra obtained from cultured Spodoptera frugiperda cells after coinfection with authentic AcNPV was used. Immunohistological analyses of infected animals revealed that the hemagglutinin was expressed only in those tissues that are also permissive for the replication of authentic AcNPV. These tissues included hypodermis, fat body, and tracheal matrix. After oral infection, hemagglutinin was also detected in individual gut cells. The amount of hemagglutinin synthesized in larvae after parenteral infection was 0.3% of the total protein, compared with 5% obtained in cultured insect cells. The hemagglutinin was transported to the cell surface and expressed in polarized cells only at the apical plasma membrane. It was processed by posttranslational proteolysis into the cleavage products HA1 and HA2. Oligosaccharides were attached by N-glycosidic linkages and were smaller than those found on hemagglutinin obtained from vertebrate cells. Hemagglutinin from larvae expressed receptor binding and cell fusion activities, but quantitation of the hemolytic capacity revealed that it was only about half as active as hemagglutinin from vertebrate or insect cell cultures. Chickens immunized with larval tissues containing hemagglutinin were protected from infection with fowl plague virus. These observations demonstrate that live insects are able to produce a recombinant membrane protein of vertebrate origin in biologically active form.  相似文献   

15.
The VP6 protein of rotavirus A (RVA) is a target antigen used for diagnostic assays and also for the development of new RVA vaccines. We have compared the expression of VP6 protein in human embryonic kidney (HEK293-T) cells with results obtained using a well-established insect cell-baculovirus system. The recombinant VP6 (rVP6) expressed in HEK293-T cells did not present degradation and also retained the ability to form trimers. In the insect cell-baculovirus system, rVP6 was expressed at higher levels and with protein degradation as well as partial loss of ability to form trimers was observed. Therefore, HEK293-T cells represent a less laborious alternative system than insect cells for expression of rVP6 from human RVA.  相似文献   

16.
摘要:【目的】本研究旨在构建在鸡原代骨骼肌细胞中表达IBDV病毒VP2基因的重组杆状病毒。【方法】从IBDV适应细胞毒中提取RNA,用RT-PCR技术扩增VP2基因,将其克隆到自主构建的杆状病毒转移载体的CMV启动子之下,通过Bac-to-Bac系统获得VP2重组Bacmid,并将其转染Sf9昆虫 细胞,获得了VP2重组杆状病毒。重组病毒经扩增后以50个MOI感染鸡原代骨骼肌细胞,接种72h后裂解细胞收获蛋白。【结果】蛋白样品经SDS-PAGE和Western blot证实VP2蛋白获得表达,分子量约48kDa,与预测蛋白大小一致,且能被IBDV阳性血清所识别。【结论】重组杆状病毒可以有效地将VP2基因导入鸡原代细胞,并在CMV的启动下表达具有抗原性的VP2蛋白,本研究为研制IBDV及其他重要禽类传染病的杆状病毒载体疫苗奠定了基础。  相似文献   

17.
Kar AK  Roy P 《Journal of virology》2003,77(21):11347-11356
The VP6 protein of bluetongue virus possesses a number of activities, including nucleoside triphosphatase, RNA binding, and helicase activity (N. Stauber, J. Martinez-Costas, G. Sutton, K. Monastyrskaya, and P. Roy, J. Virol. 71:7220-7226, 1997). Although the enzymatic functions of the protein have been documented, a detailed structure and function study has not been completed and the oligomeric form of the protein in solution has not been described. In this study, we have characterized VP6 activity by creating site-directed mutations in the putative functional helicase domains. Mutant proteins were expressed at high levels in an insect cell by using recombinant baculoviruses purified and analyzed for ATP binding, ATP hydrolysis, and RNA unwinding activities. UV cross-linking experiments indicated that the lysine residue in the conserved motif AXXGXGK(110)V is directly involved in ATP binding, whereas mutant R(205)Q in the arginine-rich motif ER(205)XGRXXR bound ATP at a level comparable to that of the wild-type protein. The RNA binding activity was drastically altered in the R(205)Q mutant and was also affected in the K(110)N mutant. Helicase activity was altered in both mutants. The mutation E(157)N in the DEXX sequence, presumed to act as a Walker B motif, showed an intermediate activity, implying that this motif does not play a crucial role in VP6 function. Purified protein demonstrated stable oligomers with a ring-like morphology in the presence of nucleic acids similar to those shown by other helicases. Gel filtration chromatography, native gel electrophoresis, and glycerol gradient analysis clearly indicated multiple oligomeric forms of VP6.  相似文献   

18.
Kar AK  Iwatani N  Roy P 《Journal of virology》2005,79(17):11487-11495
The bluetongue virus (BTV) core protein VP3 plays a crucial role in the virion assembly and replication process. Although the structure of the protein is well characterized, much less is known about the intracellular processing and localization of the protein in the infected host cell. In BTV-infected cells, newly synthesized viral core particles accumulate in specific locations within the host cell in structures known as virus inclusion bodies (VIBs), which are composed predominantly of the nonstructural protein NS2. However, core protein location in the absence of VIBs remains unclear. In this study, we examined VP3 location and degradation both in the absence of any other viral protein and in the presence of NS2 or the VP3 natural associate protein, VP7. To enable real-time tracking and processing of VP3 within the host cell, a fully functional enhanced green fluorescent protein (EGFP)-VP3 chimera was synthesized, and distribution of the fusion protein was monitored in different cell types using specific markers and inhibitors. In the absence of other BTV proteins, EGFP-VP3 exhibited distinct cytoplasmic focus formation. Further evidence suggested that EGFP-VP3 was targeted to the proteasome of the host cells but was dispersed throughout the cytoplasm when MG132, a specific proteasome inhibitor, was added. However, the distribution of the chimeric EGFP-VP3 protein was altered dramatically when the protein was expressed in the presence of the BTV core protein VP7, a normal partner of VP3 during BTV assembly. Interaction of EGFP-VP3 and VP7 and subsequent assembly of core-like particles was further examined by visualizing fluorescent particles and was confirmed by biochemical analysis and by electron microscopy. These data indicated the correct assembly of EGFP-VP3 subcores, suggesting that core formation could be monitored in real time. When EGFP-VP3 was expressed in BTV-infected BSR cells, the protein was not associated with proteasomes but instead was distributed within the BTV inclusion bodies, where it colocalized with NS2. These findings expand our knowledge about VP3 localization and its fate within the host cell and illustrate the assembly capability of a VP3 molecule with a large amino-terminal extension. This also opens up the possibility of application as a delivery system.  相似文献   

19.
K Kuroda  C Hauser  R Rott  H D Klenk    W Doerfler 《The EMBO journal》1986,5(6):1359-1365
The insect baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) has played a major role in studies on the molecular biology of insect DNA viruses. Recently, this system has been effectively adapted as a highly efficient vector in insect cells for the expression of several mammalian genes. A cDNA sequence of the influenza (fowl plague) virus haemagglutinin gene has been inserted into the BamHI site of the pAc373 polyhedrin vector. Spodoptera frugiperda cells were co-transfected with this construct, pAc-HA651, and authentic AcNPV DNA. Recombinant virus was selected by adsorption of transfected cells to erythrocytes followed by serial plaque passages on S. frugiperda cells. We have determined the site of insertion of the haemagglutinin gene into the AcNPV genome by restriction enzyme cleavage and Southern blot hybridization analyses using haemagglutinin cDNA as a probe. The influenza haemagglutinin gene is located in the polyhedrin gene of AcNPV DNA. Immunofluorescent labelling, immunoprecipitation and immunoblot analyses with specific antisera revealed that S. frugiperda cells produce immune reactive haemagglutinin after infection with the recombinant virus. The haemagglutinin is expressed at the cell surface and has haemolytic capacity that has been activated by post-translational proteolytic cleavage. When chickens were immunized with S. frugiperda cells expressing haemagglutinin, they developed haemagglutinin-inhibiting and neutralizing antibodies and were protected from infection with fowl plague virus. These observations demonstrate that the haemagglutinin is processed in insect cells in a similar fashion as in fowl plaque virus-infected vertebrate cells and that it has full biological activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号