首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative damage to surfactant can decrease lung function in vivo. In the current study, our two objectives were: 1) to examine whether the adverse effects of oxidized surfactant would be accentuated in animals exposed to high tidal volume ventilation, and 2) to test whether supplementation with surfactant protein A (SP-A) could improve the function of oxidized surfactant in vivo. The first objective was addressed by evaluating the response of surfactant-deficient rats administered normal or oxidized surfactant and then subjected to low tidal volume (6 ml/kg) or high tidal volume (12 ml/kg) mechanical ventilation. Under low tidal volume conditions, rats administered oxidized surfactant had impaired lung function, as determined by lung compliance and arterial blood gas analysis, compared with nonoxidized controls. Animals subjected to high tidal volume ventilation had impaired lung function compared with low tidal volume groups, regardless of the oxidative status of the surfactant. The second experiment demonstrated a significantly superior physiological response in surfactant-deficient rats receiving SP-A containing oxidized surfactant compared with oxidized surfactant. Lavage analysis at the end of the in vivo experimentation showed no differences in the recovery of oxidized surfactant compared with nonoxidized surfactant. We conclude that minimizing excessive lung stretch during mechanical ventilation is important in the context of exogenous surfactant supplementation and that SP-A has an important biophysical role in surfactant function in conditions of oxidative stress. Furthermore, the oxidative status of the surfactant does not appear to affect the alveolar metabolism of this material.  相似文献   

2.
Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.  相似文献   

3.
C-reactive protein (CRP) and surfactant protein A (SP-A) are phosphatidylcholine (PC) binding proteins that function in the innate host defense system. We examined the effects of CRP and SP-A on the surface activity of bovine lipid extract surfactant (BLES), a clinically applied modified natural surfactant. CRP inhibited BLES adsorption to form a surface-active film and the film's ability to lower surface tension (gamma) to low values near 0 mN/m during surface area reduction. The inhibitory effects of CRP were reversed by phosphorylcholine, a water-soluble CRP ligand. SP-A enhanced BLES adsorption and its ability to lower gamma to low values. Small amounts of SP-A blocked the inhibitory effects of CRP. Electron microscopy showed CRP has little effect on the lipid structure of BLES. SP-A altered BLES multilamellar vesicular structure by generating large, loose bilayer structures that were separated by a fuzzy amorphous material, likely SP-A. These studies indicate that although SP-A and CRP both bind PC, there is a difference in the manner in which they interact with surface films.  相似文献   

4.
Pulmonary surfactant forms a surface film that consists of a monolayer and a monolayer-associated reservoir. The extent to which surfactant components including the main component, dipalmitoylphosphatidylcholine (DPPC), are adsorbed into the monolayer, and how surfactant protein SP-A affects their adsorptions, is not clear. Transport of cholesterol to the surface region from dispersions of bovine lipid extract surfactant [BLES(chol)] with or without SP-A at 37 degrees C was studied by measuring surface radioactivities of [4-(14)C]cholesterol-labeled BLES(chol), and the Wilhelmy plate technique was used to monitor adsorption of monolayers. Results showed that transport of cholesterol was lipid concentration dependent. SP-A accelerated lipid adsorption but suppressed the final level of cholesterol in the surface. Surfactant adsorbed from a dispersion with or without SP-A was transferred via a wet filter paper to a clean surface, where the surface radioactivity and surface tension were recorded simultaneously. It was observed that 1) surface radioactivity was constant over a range of dispersion concentrations; 2) cholesterol and DPPC were transferred simultaneously; and 3) SP-A limited transfer of cholesterol.These results indicate that non-DPPC components of pulmonary surfactant can be adsorbed into the monolayer. Studies in the transfer of [1-(14)C]DPPC-labeled BLES(chol) to an equal or larger clean surface area revealed that SP-A did not increase selective adsorption of DPPC into the monolayer. Evaluation of transferred surfactant with a surface balance indicated that it equilibrated as a monolayer. Furthermore, examination of transferred surfactants from dispersions with and without prespread BLES(chol) monolayers revealed a functional contiguous association between adsorbed monolayers and reservoirs.  相似文献   

5.
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 degrees C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 degrees C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo.  相似文献   

6.
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 °C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 °C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo.  相似文献   

7.
Pulmonary surfactant (PS) dysfunction because of the leakage of serum proteins into the alveolar space could be an operative pathogenesis in acute respiratory distress syndrome. Albumin-inhibited PS is a commonly used in vitro model for studying surfactant abnormality in acute respiratory distress syndrome. However, the mechanism by which PS is inhibited by albumin remains controversial. This study investigated the film organization of albumin-inhibited bovine lipid extract surfactant (BLES) with and without surfactant protein A (SP-A), using atomic force microscopy. The BLES and albumin (1:4 w/w) were cospread at an air-water interface from aqueous media. Cospreading minimized the adsorption barrier for phospholipid vesicles imposed by preadsorbed albumin molecules, i.e., inhibition because of competitive adsorption. Atomic force microscopy revealed distinct variations in film organization, persisting up to 40 mN/m, compared with pure BLES monolayers. Fluorescence confocal microscopy confirmed that albumin remained within the liquid-expanded phase of the monolayer at surface pressures higher than the equilibrium surface pressure of albumin. The remaining albumin mixed with the BLES monolayer so as to increase film compressibility. Such an inhibitory effect could not be relieved by repeated compression-expansion cycles or by adding surfactant protein A. These experimental data indicate a new mechanism of surfactant inhibition by serum proteins, complementing the traditional competitive adsorption mechanism.  相似文献   

8.
Exposing bovine lipid extract surfactant (BLES), a clinical surfactant, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in surfactant proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that surfactant oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with surfactant function through oxidation of surfactant PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects.  相似文献   

9.
To investigate the role of the pulmonary surfactant-associated proteins SP-A and SP-B, the respective monoclonal antibody (anti-A or anti-B) was added to porcine pulmonary surfactant at a weight ratio of 1:2, and the mixtures were tested on surfactant-deficient immature newborn rabbits (gestational age 26 days). Under pentobarbital sodium anesthesia and mechanical ventilation with a 25-cmH2O peak insufflation pressure, the tidal volumes of the animals given surfactant alone and of those given surfactant containing anti-A were 27.9 +/- 5.1 and 25.1 +/- 9.6 (SD) ml/kg, respectively, whereas that of those given surfactant with anti-B was 5.8 +/- 3.6 ml/kg (P less than 0.05). The surface adsorption times of surfactant alone and of anti-A-containing surfactant were less than 0.8 s compared with greater than 120 s (P less than 0.01) for anti-B-containing surfactant. The anti-B suppressed the surfactant activity until the weight ratio was decreased to 2:100. The role of SP-A could not be clarified, but it was concluded that SP-B is an essential factor for surfactant activity.  相似文献   

10.
The objective of this study was to evaluate the in vitro effect of budesonide and salbutamol on the surfactant biophysical properties. The surface-tension properties of two bovine lipid extracts [bovine lipid extract surfactant (BLES) and Survanta] and a rat lung lavage natural surfactant were evaluated in vitro by the captive bubble surfactometer. Measurements were obtained before and after the addition of a low and high concentration of budesonide and salbutamol. Whereas salbutamol had no significant effect, budesonide markedly reduced the surface-tension-lowering properties of all surfactant preparations. Surfactant adsorption (decrease in surface tension vs. time) was significantly reduced (P < 0.01) at a high budesonide concentration with BLES, both concentrations with Survanta, and a low concentration with natural surfactant. At both concentrations, budesonide reduced (P < 0.01) Survanta film stability (minimal surface vs. time at minimum bubble volume), whereas no changes were seen with BLES. The minimal surface tension obtained for all surfactant preparations was significantly higher (P < 0.01), and the percentage of film area compression required to reach minimum surface tension was significantly lower after the addition of budesonide. In conclusion, budesonide, at concentrations used therapeutically, adversely affects the surface-tension-lowering properties of surfactant. We speculate that it may have the same adverse effect on the human surfactant.  相似文献   

11.
Pulmonary surfactant isolated from bronchoalveolar lavage fluid of rat lung contained a high content of surfactant protein A (SP-A) in starved for 2 days compared to fed controls, but this phenomena returned to baseline following more than 4 days starvation. As determined by immunoperoxidase staining of lung sections using SP-A antibody, SP-A could be consistently observed in nonciliated bronchiolar (Clara) cells, alveolar type II cells and some alveolar macrophages (AM). Fc receptor-mediated phagocytosis of AM was enhanced by SP-A, which was dependent on the dosis and reached a maximum at 10 micrograms of SP-A/ml. Antibody to SP-A completely inhibited the enhanced response of phagocytosis. When exposed AM subpopulations, separated into four fractions (I, II, III and IV) by discontinuous Percoll gradient, to SP-A or pulmonary surfactant prepared from rats fed and starved for 2 days enhanced their phagocytic activity in high dense cells (III and IV), particularly to SP-A and pulmonary surfactant from rats starved for 2 days. Whereas little change in lower dense fractions (I and II) were seen in all exposures except for SP-A that enhanced the cells of fraction II. These results supported the concept that pulmonary surfactant and its apoprotein, SP-A, are a factor to regulate lung defense system including activation of AM that undergo different processes following starvation.  相似文献   

12.
The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant.  相似文献   

13.
The surface activity of two surfactant preparations, Lipid Extract Surfactant (LES) and Survanta, was examined during adsorption and dynamic compression using a pulsating bubble surfactometer. At low surfactant phospholipid concentrations (1-2.5 mg/ml), Survanta reduces surface tension at minimum bubble radius faster than LES: however, with continued pulsation LES obtains a lower surface tension. Addition of surfactant-associated protein A (SP-A) to LES significantly reduces the time required to reduce surface tension. Survanta is completely unresponsive to the addition of SP-A in that no further reduction of surface tension is observed. Addition of various blood components has been previously shown to inactivate surfactants in vitro. Addition of fibrinogen to Survanta causes an increase in surface tension when measured in the absence of calcium. When assayed in the presence of calcium, inhibition by fibrinogen is not observed possibly due to aggregation of this protein. Albumin and alpha-globulin strongly inhibit Survanta at physiological serum concentrations both in the presence and absence of calcium. The surface activity of Survanta is also inhibited by lysophosphatidylcholine (lyso-PC). The role of palmitic acid in the surface activity of pulmonary surfactant was examined by adding palmitic acid to LES. At low phospholipid concentrations addition of palmitic acid (10% w/w of the surfactant phospholipid) greatly enhances the surface activity of LES. Maximal enhancement of surface activity and adsorption was observed at or above 7.5% added palmitic acid (w/w of surfactant lipid). LES supplemented with palmitic acid is more resistant to inhibition by fibrinogen, albumin, alpha-globulin and lyso-PC than LES alone, however, the counteraction of blood protein inhibition is not as pronounced as that observed with SP-A.  相似文献   

14.
A molecular film of pulmonary surfactant strongly reduces the surface tension of the lung epithelium-air interface. Human pulmonary surfactant contains 5-10% cholesterol by mass, among other lipids and surfactant specific proteins. An elevated proportion of cholesterol is found in surfactant, recovered from acutely injured lungs (ALI). The functional role of cholesterol in pulmonary surfactant has remained controversial. Cholesterol is excluded from most pulmonary surfactant replacement formulations, used clinically to treat conditions of surfactant deficiency. This is because cholesterol has been shown in vitro to impair the surface activity of surfactant even at a physiological level. In the current study, the functional role of cholesterol has been re-evaluated using an improved method of evaluating surface activity in vitro, the captive bubble surfactometer (CBS). Cholesterol was added to one of the clinically used therapeutic surfactants, BLES, a bovine lipid extract surfactant, and the surface activity evaluated, including the adsorption rate of the substance to the air-water interface, its ability to produce a surface tension close to zero and the area compression needed to obtain that low surface tension. No differences in the surface activity were found for BLES samples containing either none, 5 or 10% cholesterol by mass with respect to the minimal surface tension. Our findings therefore suggest that the earlier-described deleterious effects of physiological amounts of cholesterol are related to the experimental methodology. However, at 20%, cholesterol effectively abolished surfactant function and a surface tension below 15 mN/m was not obtained. Inhibition of surface activity by cholesterol may therefore partially or fully explain the impaired lung function in the case of ALI. We discuss a molecular mechanism that could explain why cholesterol does not prevent low surface tension of surfactant films at physiological levels but abolishes surfactant function at higher levels.  相似文献   

15.
The effects of surfactant protein (SP)-A on the dynamic surface tension lowering and resistance to inhibition of dispersions of calf lung surfactant extract (CLSE) and mixtures of synthetic phospholipids combined with SP-B,C hydrophobic apoproteins were studied at 37 degrees C and rapid cycling rate (20 cycles/min). Addition of SP-A to CLSE, which already contains SP-B and -C, gave a slight improvement in the time course of surface tension lowering on an oscillating bubble apparatus in the absence of inhibitory protein molecules such as albumin or hemoglobin. However, when these proteins were present at concentrations of 10-50 mg/ml, SP-A substantially improved the resistance of CLSE to their inhibitory effects. The beneficial effect of SP-A required the presence of Ca2+ ions, and disappeared when EDTA was substituted for this divalent cation in the subphase. The effect was also retained when SP-A was heated to 50 degrees C prior to addition to CLSE, but was abolished by heating SP-A to 99 degrees C. Additional studies showed that similar improvements in resistance to inhibition were found when SP-A was added to synthetic mixtures of dipalmitoyl phosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (80:20 by weight) reconstituted with 1% SP-B or SP-B and -C, but not to phospholipid mixtures containing only SP-C. The requirements for SP-B and calcium for the beneficial effects of SP-A on surface activity suggest that the formation of ordered, larger phospholipid-apoprotein aggregates may be involved in the process. The finding that SP-A enhances the ability of CLSE and other surfactant mixtures containing SP-B to resist inhibition is an advantage that will need to be weighed against other factors such as increased antigenicity and heat sensitivity in therapeutic applications in surfactant replacement therapy.  相似文献   

16.
Previous in vitro studies have suggested that surfactant protein A (SP-A) may play a role in pulmonary surfactant homeostasis by mediating surfactant secretion and clearance. However, mice made deficient in SP-A [SP-A (-/-) animals] have relatively normal levels of surfactant compared with wild-type SP-A (+/+) animals. We hypothesize that SP-A may play a role in surfactant homeostasis after acute lung injury. Bacterial lipopolysaccharide was instilled into the lungs of SP-A (-/-) mice and SP-A (+/+) mice to induce injury. Surfactant phospholipid levels were increased 1.6-fold in injured SP-A (-/-) animals, although injury did not alter [3H]choline or [14C]palmitate incorporation into dipalmitoylphosphatidylcholine (DPPC), suggesting no change in surfactant synthesis/secretion 12 h after injury. Clearance of [3H]DPPC from the lungs of injured SP-A (-/-) animals was decreased by approximately 40%. Instillation of 50 microg of exogenous SP-A rescued both the clearance defect and the increased phospholipid defect in injured SP-A (-/-) animals, suggesting that SP-A may play a role in regulating clearance of surfactant phospholipids after acute lung injury.  相似文献   

17.
Preterm rabbit fetuses, delivered on the 27th day of gestation, were studied following upper airway instillation with either natural surfactant (NSA) obtained from the lavage of adult rabbit lungs or with a protein-free suspension of lipids extracted from lung wash (ESA). First, lung compliance was studied postmortem. The administration of 25 microliters of either preparation resulted in greater hysteresis (P less than 0.05) than was observed in control fetuses receiving no surfactant material. Increasing the phospholipid concentration stepwise from 10 to 50 mg/ml improved airway expansion and stability. No further improvement was encountered with concentrations greater than 50 mg/ml. There was no significant difference in compliance response between NSA and ESA. Morphometry of the lungs also indicated that the two preparations had an equal effect on compliance. Second, it was determined how neonatal survival was affected by a pharyngeal deposition, prior to the first breath, of 50 microliters NSA or ESA. Both treatment groups demonstrated improved survival (P less than 0.001) when compared with controls receiving no pharyngeal deposition. These findings offer further support to the concept that protein is not required for the efficacy of a surfactant supplementation. The equivalence of the two preparations suggests that a sterile suspension of a protein-free surfactant extract could be used to prevent or treat respiratory distress in preterm neonates.  相似文献   

18.
Nitration of protein tyrosine residues by peroxynitrite (ONOO) has been implicated in a variety of inflammatory diseases such as acute respiratory distress syndrome (ARDS). Pulmonary surfactant protein A (SP-A) has multiple functions including host defense. We report here that a mixture of hypochlorous acid (HOCl) and nitrite (NO2) induces nitration, oxidation, and chlorination of tyrosine residues in human SP-A and inhibits SP-A’s ability to aggregate lipids and bind mannose. Nitration and oxidation of SP-A was not altered by the presence of lipids, suggesting that proteins are preferred targets in lipid-rich mixtures such as pulmonary surfactant. Moreover, both horseradish peroxidase and myeloperoxidase (MPO) can utilize NO2 and hydrogen peroxide (H2O2) as substrates to catalyze tyrosine nitration in SP-A and inhibit its lipid aggregation function. SP-A nitration and oxidation by MPO is markedly enhanced in the presence of physiological concentrations of Cl and the lipid aggregation function of SP-A is completely abolished. Collectively, our results suggest that MPO released by activated neutrophils during inflammation utilizes physiological or pathological levels of NO2 to nitrate proteins, and may provide an additional mechanism in addition to ONOO formation, for tissue injury in ARDS and other inflammatory diseases associated with upregulated NO and oxidant production.  相似文献   

19.
Hydrolysis of surfactant phospholipids by secreted phospholipases A(2) (sPLA(2)) contributes to surfactant dysfunction in acute respiratory distress syndrome. The present study demonstrates that sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X efficiently hydrolyze surfactant phospholipids in vitro. In contrast, sPLA(2)-IIC, -IID, -IIE, and -IIF have no effect. Since purified surfactant protein A (SP-A) has been shown to inhibit sPLA(2)-IIA activity, we investigated the in vitro effect of SP-A on the other active sPLA(2) and the consequences of sPLA(2)-IIA inhibition by SP-A on surfactant phospholipid hydrolysis. SP-A inhibits sPLA(2)-X activity, but fails to interfere with that of sPLA(2)-V. Moreover, in vitro inhibition of sPLA(2)-IIA-induces surfactant phospholipid hydrolysis correlates with the concentration of SP-A in surfactant. Intratracheal administration of sPLA(2)-IIA to mice causes hydrolysis of surfactant phosphatidylglycerol. Interestingly, such hydrolysis is significantly higher for SP-A gene-targeted mice, showing the in vivo inhibitory effect of SP-A on sPLA(2)-IIA activity. Administration of sPLA(2)-IIA also induces respiratory distress, which is more pronounced in SP-A gene-targeted mice than in wild-type mice. We conclude that SP-A inhibits sPLA(2) activity, which may play a protective role by maintaining surfactant integrity during lung injury.  相似文献   

20.
Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号