首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.  相似文献   

2.
5-azacytidine (AZA) yields hematologic improvement in patients with myelodysplastic syndromes (MDS). Ineffective hemopoiesis in MDS produce the paradox of high intramedullary cellularity with peripheral cytopenias. Leukemia inhibitory factor (LIF), oncostatin M (OSM), interleukin (IL)-6, and IL-11 regulate hemopoiesis and LIF, OSM, and IL-6 also inhibit the proliferation of myeloid leukemic cell lines through the signal-transducing subunit gp130. These IL-6-type cytokines were measured by enzyme-linked immunosorbent assay in cell culture supernatants (SN) obtained from peripheral blood mononuclear cells (MNC) and monocyte-depleted MNC of patients with refractory anemia (RA; n=12) and healthy individuals (n=10). AZA down-regulated OSM, IL-6, and IL-11 release by MNC of patients but not by MNC from healthy individuals. Patient's SN had significantly lower concentrations of LIF, OSM, and IL-11 than SN of normal subjects. When monocyte-depleted MNC of patients were stimulated with phytohemagglutinin a significant increment in OSM levels was observed. In contrast, monocyte depletion in healthy subjects did not cause any significant change in OSM values. We conclude that: (a) AZA inhibits the release of OSM, IL-6, and IL-11 exclusively in RA-diseased MNC, (b) Patient's MNC release subnormal amounts of LIF, OSM, and IL-11, and (c) RA-derived monocytes probably down-regulate OSM release by phytohemagglutinin-activated MNC.  相似文献   

3.
Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture   总被引:9,自引:0,他引:9  
Interleukin (IL)-6-type cytokines are multifunctional proteins involved in cardiac hypertrophy and myocardial protection. Recent studies, performed on animal models, report the production of these cytokines by heart. The aim of this study was to analyse the capacity of myocytes and fibroblasts isolated from human atrium to secrete IL-6, leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF) and the soluble receptor subunits sIL-6R and sgp130 during primary culture. We detected LIF, IL-11, sgp130 and a large amount of IL-6, but not OSM, CT-1, CNTF nor IL-6R in these culture supernatants. Both cardiomyocytes and fibroblasts are able to spontaneously produce IL-6. The increase of IL-6 production all along the culture period appears to be the consequence of fibroblast proliferation and gp130 stimulation. This is the first demonstration that human cardiac cells are able to secrete IL-6, but also LIF and IL-11 in vitro. These cytokines could be involved in an autocrine and/or a paracrine networks regulating myocardial cyto-protection, hypertrophy and fibrosis.  相似文献   

4.
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone’s internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a “coupling factor” on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of “osteotransmitters” that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.  相似文献   

5.
Oncostatin M (OSM) is a member of the IL-6/LIF (or gp130) cytokine family, and its potential role in inflammation is supported by a number of activities identified in vitro. In this study, we investigate the action of murine OSM on expression of the CC chemokine eotaxin by fibroblasts in vitro and on mouse lung tissue in vivo. Recombinant murine OSM stimulated eotaxin protein production and mRNA levels in the NIH 3T3 fibroblast cell line. IL-6 could regulate a small induction of eotaxin in NIH 3T3 cells, but other IL-6/LIF cytokines (LIF, cardiotrophin-1 (CT-1)) had no effect. Cell signaling studies showed that murine OSM, LIF, IL-6, and CT-1 stimulated the tyrosine phosphorylation of STAT-3, suggesting STAT-3 activation is not sufficient for eotaxin induction in NIH 3T3 cells. OSM induced ERK-1,2 and p38 mitogen-activated protein kinase phosphorylation in NIH 3T3 cells, and inhibitors of ERK (PD98059) or p38 (SB203580) could partially reduce OSM-induced eotaxin production, suggesting partial dependence on mitogen-activated protein kinase signaling. OSM (but not LIF, IL-6, or CT-1) also induced eotaxin release by mouse lung fibroblast cultures derived from C57BL/6 mice. Overexpression of murine OSM in lungs of C57BL/6 mice using an adenovirus vector encoding murine OSM resulted in a vigorous inflammatory response by day 7 after intranasal administration, including marked extracellular matrix accumulation and eosinophil infiltration. Elevated levels of eotaxin mRNA in whole lung were detected at days 4 and 5. These data strongly support a role of OSM in lung inflammatory responses that involve eosinophil infiltration.  相似文献   

6.
Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bone sialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model.  相似文献   

7.
8.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
The common cytokine receptor chain, gp130, controls the activity of a group of cytokines, namely, IL-6, IL-11, IL-27, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC) and neuropoietin (NPN). This family of cytokines is involved in multiple different biological processes, including inflammation, acute phase response, immune responses and cell survival. To analyze the different components of the gp130 network, mouse mutants for the single cytokine were generated by conventional gene targeting. However, since the cytokines of the IL-6 family show redundancy, it does not reveal the complete picture. Therefore, the study of mice with a cell type specific inactivation of the gp130 receptor chain is an approach that will subsequently allow the dissection of the cellular cytokine network. Here, we summarize the experimental results of the conditional gp130 mutants published so far.  相似文献   

11.
Macrophages play a major role in angiogenesis. We recently reported that oncostatin M (OSM), a cytokine of the interleukin (IL)-6 family secreted by macrophages, has a potent angiogenic activity on human microvascular endothelial cells (HMEC-1), but has no effect on macrovascular cells (human umbilical vein endothelial cells (HUVECs)). In this work, we show that in HMEC-1, OSM (0.5-2.5 ng/ml), leukemia inhibitory factor (LIF) (25 ng/ml), bFGF (25 ng/ml) and IL-1beta (5 ng/ml) induced production of cyclooxygenase (COX)-2. In contrast, in HUVECs, neither OSM nor LIF induced COX-2 mRNA, suggesting that COX-2 might be implicated in the angiogenic activity of OSM. This was confirmed by the inhibiting effect on OSM-induced HMEC-1 proliferation of specific COX-2 inhibitors. In vivo studies confirmed this findings. We conclude that induction of COX-2 by OSM is necessary for its angiogenic activity, but is not sufficient since IL-1beta, which also induces COX-2 in HMEC-1, has only a poor proliferative effect.  相似文献   

12.
13.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

14.
Leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and oncostatin M (OSM) are four helix bundle cytokines acting through a common heterodimeric receptor composed of gp130 and LIF receptor (LIFR). Binding to LIFR occurs through a binding site characterized by an FXXK motif located at the N terminus of helix D (site III). The immunoglobulin (Ig)-like domain of LIFR was modeled, and the physico-chemical properties of its Connolly surface were analyzed. This analysis revealed an area displaying properties complementary to those of the LIF site III. Two residues of the Ig-like domain of LIFR, Asp214 and Phe284, formed a mirror image of the FXXK motif. Engineered LIFR mutants in which either or both of these two residues were mutated to alanine were transfected in Ba/F3 cells already containing gp130. The F284A mutation impaired the biological response induced by LIF and CT-1, whereas the response to OSM remained unchanged. The Asp214 mutation did not alter the functional responses. The D214A/F284A double mutation, however, totally impaired cellular proliferation to LIF and CT-1 and partially impaired OSM-induced proliferation with a 20-fold increase in EC50. These results were corroborated by the analysis of STAT3 phosphorylation and Scatchard analysis of cytokine binding to Ba/F3 cells. Molecular modeling of the complex of LIF with the Ig-like domain of LIFR provides a clue for the superadditivity of the D214A/F284A double mutation. Our results indicate that LIF, CT-1, and OSM share an overlapping binding site located in the Ig-like domain of LIFR. The different behaviors of LIF and CT-1, on one side, and of OSM, on the other side, can be related to the different affinity of their site III for LIFR.  相似文献   

15.
Three cytokines, interleukin 6 (IL-6), leukaemia inhibitory factor (LIF), and oncostatin M (OSM), that bind to composite receptors including a common signal transducer gp130 suppressed proliferation of a mouse B-cell hybridoma cell line 2E3-O cultured in serum-free medium, while they enhanced antibody production of the cells. The specific growth rate of the cells reduced from 1.0/day for control to 0.6/day for the cultures supplemented with IL-6, LIF, or OSM at 1, 4, or 2 ng/ml, respectively. The antibody productivity increased five-fold when the cells were cultured with IL-6, LIF, or OSM at 1, 25, or 20 ng/ml, respectively. Transforming growth factor β1 (TGF-β1) similarly suppressed growth of the cells at the concentration of 5 ng/ml, while it did not enhance the antibody production. Cell cycle analysis revealed that IL-6 induced the cells to be arrested at G1phase of the cell cycle more intensively than TGF-β1, indicating that IL-6 and TGF-β1 suppressed the growth through mutually different mechanisms. As a whole, this work suggests that gp130, which is commonly involved in each receptor for IL-6, LIF, OSM, transduces signals for suppressing proliferation and possibly for enhancing antibody production in the hybridoma cells.  相似文献   

16.
17.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

18.
Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号