首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and Ca(2+)-induced conformational changes in NCS-1 as compared with the role in the nonmyristoylated protein. The (45)Ca binding and isothermal titration calorimetric data show that myristoylation increases the degree of cooperativity; thus, the myristoylated NCS-1 binds Ca(2+) more strongly (with three Ca(2+) binding sites) than the non-myristoylated one (with two Ca(2+) binding sites). Both forms of protein show different conformational features in far-UV CD when titrated with Ca(2+). Large conformational changes were seen in the near-UV CD with more changes in the case of nonmyristoylated protein than the myristoylated one. Although the changes in the far-UV CD upon Ca(2+) binding were not seen in E120Q mutant (disabling EF-hand 3), the near-UV CD changes in conformation also were not influenced by this mutation. The difference in the binding affinity of myristoylated and non-myristoylated proteins to Ca(2+) also was reflected by Trp fluorescence. Collisional quenching by iodide showed more inaccessibility of the fluorophore in the myristoylated protein. Mg(2+)-induced changes in near-UV CD are different from Ca(2+)-induced changes, indicating ion selectivity. 8-Anilino-1-naphthalene sulfonic acid binding data showed solvation of the myristoyl group in the presence of Ca(2+), which could be attributed to the myristoyl-dependent conformational changes in NCS-1. These results suggest that myristoylation influences the protein conformation and Ca(2+) binding, which might be crucial for its physiological functions.  相似文献   

2.
Neuronal calcium sensors (NCSs) belong to a family of Ca(2+)-binding proteins, which serve important functions in neurotransmission, and are highly conserved from yeast to humans. Overexpression of the neuronal calcium sensor-1, called frequenin in the fruit fly and in frog, increases the release of neurotransmitters. Studying the functional role of frequenin in mammals and understanding its structural dynamics is critically dependent on the availability of active purified protein. Neuronal calcium sensors like other members of the family share common structural features: they contain four EF-hands as potential binding sites for Ca(2+) and an N-terminal consensus sequence for myristoylation. Previously, recoverin, distantly related to NCSs, has been expressed and purified from Escherichia coli, involving a combination of different chromatographic steps. NCS-1 has earlier been purified adopting a two-step procedure used for recoverin purification. We have overexpressed NCS-1 from rat in its myristoylated and nonmyristoylated form in E. coli and purified it from crude lysates using a single-step hydrophobic interaction chromatography. The purified protein was identified by Western blotting and mass spectrometry and assayed for its ability to bind Ca(2+) using a Ca(2+) shift assay, terbium fluorescence, and Stains-all binding. The present protocol provides a rapid, more efficient and simplified, single-step method for purifying NCS-1 for structural and functional studies. This method can also be applied to purify related proteins of the superfamily.  相似文献   

3.
Neuronal calcium sensor-1 (NCS-1) is a small calcium binding protein that plays a key role in the internalization and desensitization of activated D2 dopamine receptors (D2Rs). Here, we have used fluorescence anisotropy (FA) and a panel of NCS-1 EF-hand variants to interrogate the interaction between the D2R and NCS-1. Our data are consistent with the following conclusions. (1) FA titration experiments indicate that at low D2R peptide concentrations calcium-loaded NCS-1 binds to the D2R peptide in a monomeric form. At high D2R peptide concentrations, the FA titration data are best fit by a model in which the D2R peptide binds two NCS-1 monomers sequentially in a cooperative fashion. (2) Competition FA experiments in which unlabeled D2R peptide was used to compete with labeled peptide for binding to NCS-1 shifted titration curves to higher NCS-1 concentrations, suggesting that the binding of NCS-1 to the D2R is highly specific and that binding occurs in a cooperative fashion. (3) N-Terminally myristoylated NCS-1 dimerizes in a calcium-dependent manner. (4) Co-immunoprecipitation experiments in HEK-293 confirm that NCS-1 can oligomerize in cell lysates and that oligomerization is dependent on calcium binding and requires functionally intact EF-hand domains. (5) Ca(2+)/Mg(2+) FA titration experiments revealed that NCS-1 EF-hands 2-4 (EF2-4) contributed to binding with the D2R peptide. EF2 appears to have the highest affinity for Ca(2+), and occupancy of this site is sufficient to promote high-affinity binding of the NCS-1 monomer to the D2R peptide. Magnesium ions may serve as a physiological cofactor with calcium for NCS-1-D2R binding. Finally, we propose a structural model that predicts that the D2R peptide binds to the first 60 residues of NCS-1. Together, our results support the possibility of using FA to screen for small molecule drugs that can specifically block the interaction between the D2R and NCS-1.  相似文献   

4.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein of the calcium sensor family, modulates various functions in intracellular signaling pathways. The N-terminal glycine in this protein is myristoylated, which is presumably necessary for its physiological functions. In order to understand the structural role of myristoylation and calcium on conformational stability, we have investigated the equilibrium unfolding and refolding of myristoylated and non-myristoylated NCS-1. The unfolding of these two forms of NCS-1 in the presence of calcium is best characterized by a five-state equilibrium model, and multiple intermediates accumulate during unfolding. Calcium exerts an extrinsic stabilizing effect on both forms of the protein. In the absence of calcium, the stability of both forms is dramatically decreased, and the unfolding follows a four-state equilibrium model. The equilibrium transitions are fully reversible in the presence of calcium. Myristoylation affects the pattern of equilibrium transitions substantially but not the number of intermediates, suggesting a structural role. Our data suggest that myristoylation reduces the stiffening of the protein during initial unfolding in the presence of calcium. The effects of myristoylation are more pronounced when calcium is present, suggesting a relationship between them. Inactivating the third EF-hand motif (E120Q mutant) drastically affects the equilibrium unfolding transitions, and calcium has no effect on these transitions of the mutants. The unfolding transitions of both forms of the mutant are similar to the transitions followed by the apo forms of myristoylated and non-myristoylated NCS-1. These results suggest that the role of myristoylation in unfolding/refolding of the protein is largely dependent on the presence of calcium.  相似文献   

5.
Calbindin D28k, a highly conserved protein with Ca2+-sensing and Ca2+-buffering capabilities, is abundant in brain and sensory neurons. This protein contains six EF-hand subdomains, four of which bind Ca2+ with high affinity. Calbindin D28k can be reconstituted from six synthetic peptides corresponding to the six EF-hands, indicating a single-domain structure with multiple interactions between the EF-hand subdomains. In this study, we have undertaken a detailed characterization of the Ca2+-binding and oligomerization properties of each individual EF-hand peptide using CD spectroscopy and analytical ultracentrifugation. Under the conditions tested, EF2 is monomeric and does not bind Ca2+, whereas EF6, which binds Ca2+ weakly, aggregates severely. We have therefore focused this study on the high-affinity binding sites, EF-hands 1, 3, 4, and 5. Our sedimentation equilibrium data show that, in the presence of Ca2+, EF-hands 1, 3, 4, and 5 all form dimers in solution in which the distribution between the monomer, dimer, and higher order oligomers differs. The processes of Ca2+ binding and oligomerization are linked to different degrees, and three main mechanisms emerge. For EF-hands 1 and 5, the dimer binds Ca2+ more strongly than the monomer and Ca2+ binding drives dimerization. For EF-hand 4, dimer formation requires only one of the monomers to be Ca2+-bound. In this case, the Ca2+ affinity is independent of dimerization. For EF-hand 3, dimerization occurs both in the absence and presence of Ca2+, while oligomerization increases in the presence of Ca2+.  相似文献   

6.
Information on the low-energy excited states of a given protein is important as this controls the structural adaptability and various biological functions of proteins such as co-operativity, response towards various external perturbations. In this article, we characterized individual residues in both non-myristoylated (non-myr) and myristoylated (myr) neuronal calcium sensor-1 (NCS-1) that access alternate states by measuring nonlinear temperature dependence of the backbone amide-proton (1H(N)) chemical shifts. We found that ~20% of the residues in the protein access alternative conformations in non-myr case, which increases to ~28% for myr NCS-1. These residues are spread over the entire polypeptide stretch and include the edges of α-helices and β-strands, flexible loop regions, and the Ca2(+)-binding loops. Besides, residues responsible for the absence of Ca2(+)-myristoyl switch are also found accessing alternative states. The C-terminal domain is more populated with these residues compared to its N-terminal counterpart. Individual EF-hands in NCS-1 show significantly different number of alternate states. This observation prompts us to conclude that this may lead to differences in their individual conformational flexibility and has implications on the functionality. Theoretical simulations reveal that these low-energy excited states are within an energy band of 2-4 kcal/mol with respect to the native state.  相似文献   

7.
Unlike wild type recoverin with only two (the second and the third) functioning Ca(2+)-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca(2+)-binding site. This site was reconstructed from the fourth potential Ca(2+)-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca(2+)-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild type recoverin.  相似文献   

8.
Neuronal Ca(2+) sensor protein-1 (NCS-1) is a member of the Ca(2+) binding protein family, with three functional Ca(2+) binding EF-hands and an N-terminal myristoylation site. NCS-1 is expressed in brain and heart during embryonic and postnatal development. In neurons, NCS-1 facilitates neurotransmitter release, but both inhibition and facilitation of the Ca(2+) current amplitude have been reported. In heart, NCS-1 co-immunoprecipitates with K(+) channels and modulates their activity, but the potential effects of NCS-1 on cardiac Ca(2+) channels have not been investigated. To directly assess the effect of NCS-1 on the various types of Ca(2+) channels we have co-expressed NCS-1 in Xenopus oocytes, with Ca(V)1.2, Ca(V)2.1, and Ca(V)2.2 Ca(2+) channels, using various subunit combinations. The major effect of NCS-1 was to decrease Ca(2+) current amplitude, recorded with the three different types of alpha(1) subunit. When expressed with Ca(V)2.1, the depression of Ca(2+) current amplitude induced by NCS-1 was dependent upon the identity of the beta subunit expressed, with no block recorded without beta subunit or with the beta(3) subunit. Current-voltage and inactivation curves were also slightly modified and displayed a different specificity toward the beta subunits. Taken together, these data suggest that NCS-1 is able to modulate cardiac and neuronal voltage-gated Ca(2+) channels in a beta subunit specific manner.  相似文献   

9.
Grancalcin is a Ca(2+)-binding protein expressed at high level in neutrophils. It belongs to the PEF family, proteins containing five EF-hand motifs and which are known to associate with membranes in Ca(2+)-dependent manner. Prototypic members of this family are Ca(2+)-binding domains of calpain. Our recent finding that grancalcin interacts with L-plastin, a protein known to have actin bundling activity, suggests that grancalcin may play a role in regulation of adherence and migration of neutrophils. The structure of human grancalcin has been determined at 1.9 A resolution in the absence of calcium (R-factor of 0.212 and R-free of 0.249) and at 2. 5 A resolution in the presence of calcium (R-factor of 0.226 and R-free of 0.281). The molecule is predominantly alpha-helical: it contains eight alpha-helices and only two short stretches of two-stranded beta-sheets between the loops of paired EF-hands. Grancalcin forms dimers through the association of the unpaired EF5 hands in a manner similar to that observed in calpain, confirming this mode of association as a paradigm for the PEF family. Only one Ca(2+) was found per dimer under crystallization conditions that included CaCl(2). This cation binds to EF3 in one molecule, while this site in the second molecule of the dimer is unoccupied. This unoccupied site shows higher mobility. The structure determined in the presence of calcium, although does not represent a fully Ca(2+)-loaded form, suggests that calcium induces rather small conformational rearrangements. Comparison with calpain suggests further that the relatively small magnitude of conformational changes invoked by calcium alone may be a characteristic feature of the PEF family. Moreover, the largest differences are localized to the EF1, thus supporting the notion that calcium signaling occurs through this portion of the molecule and that it may involve the N-terminal Gly/Pro rich segment. Electrostatic potential distribution shows significant differences between grancalcin and calpain domain VI demonstrating their distinct character.  相似文献   

10.
NCS-1/frequenin belongs to a family of EF-hand-containing Ca(2+) sensors expressed mainly in neurons. Overexpression of NCS-1/frequenin has been shown to stimulate neurotransmitter release but little else is known of its cellular roles. We have constructed an EF-hand mutant, NCS-1(E120Q), as a likely dominant inhibitor of cellular NCS-1 function. Recombinant NCS-1(E120Q) showed an impaired Ca(2+)-dependent conformational change but could still bind to cellular proteins. Transient expression of this mutant, but not NCS-1, in bovine adrenal chromaffin cells increased non-L-type Ca(2+) channel currents. Cells expressing NCS-1(E120Q) no longer responded effectively to the removal of autocrine purinergic/opioid inhibition of Ca(2+) currents but still showed voltage-dependent facilitation. These data are consistent with the existence of both voltage-dependent and voltage-independent pathways for Ca(2+) channel inhibition in chromaffin cells. Our results suggest a novel function for NCS-1 specific for the voltage-independent autocrine pathway that negatively regulates non-L-type Ca(2+) channels in chromaffin cells.  相似文献   

11.
Overexpression of frequenin and its orthologue neuronal Ca(2+) sensor 1 (NCS-1) has been shown to increase evoked exocytosis in neurons and neuroendocrine cells. The site of action of NCS-1 and its biochemical targets that affect exocytosis are unknown. To allow further investigation of NCS-1 function, we have demonstrated that NCS-1 is a substrate for N-myristoyltransferase and generated recombinant myristoylated NCS-1. The bacterially expressed NCS-1 shows Ca(2+)-induced conformational changes. The possibility that NCS-1 directly interacts with the exocytotic machinery to enhance exocytosis was tested using digitonin-permeabilized chromaffin cells. Exogenous NCS-1 was retained in permeabilized cells but had no effect on Ca(2+)-dependent release of catecholamine. In addition, exogenous NCS-1 did not regulate cyclic nucleotide levels in this system. These data suggest that the effects of NCS-1 seen in intact cells are likely to be due to an action on the early steps of stimulus-secretion coupling or on Ca(2+) homeostasis. Myristoylated NCS-1 bound to membranes in the absence of Ca(2+) and endogenous NCS-1 was tightly membrane-associated. Using biotinylated NCS-1, a series of specific binding proteins were detected in cytosol, chromaffin granule membrane, and microsome fractions of adrenal medulla. These included proteins distinct from those detected by biotinylated calmodulin, demonstrating the presence of multiple specific Ca(2+)-independent and Ca(2+)-dependent binding proteins as putative targets for NCS-1 action. A model for NCS-1 function, from these data, indicates a constitutive membrane association independent of Ca(2+). This differs from the Ca(2+) myristoyl switch model for the closely related recoverin and suggests a possible action in rapid Ca(2+) signal transduction in response to local Ca(2+) signals.  相似文献   

12.
The neuronal calcium sensor (NCS) family of Ca(2+)-binding proteins regulates a number of different processes in neurons and photoreceptor cells. The first of these proteins to be characterized, recoverin, was shown to exhibit a Ca(2+)/myristoyl switch whereby its N-terminal myristoyl group is sequestered in the Ca(2+)-free form and is exposed on Ca(2+) binding to allow the protein to become membrane-associated. It has subsequently been shown that certain other family members also exhibit this mechanism in living cells. In contrast, NCS-1 does not show the Ca(2+)/myristoyl switch and is membrane-associated even at low Ca(2+) concentrations. We have used sequence comparison combined with information from structural analyses to attempt to identify candidate residues within the NCS proteins that determine whether or not the Ca(2+)/myristoyl switch operates in cells and have tested their functional significance by mutagenesis. The results show that NCS-1 possesses residues within its N terminus that lock the myristoyl group in an exposed conformation. In addition, other structural aspects within the C-terminal domains are required to allow the switch to operate. We have determined a key role for residues within the motif EELTRK in NCS-1 in keeping the myristoyl group exposed and allowing the protein to be constitutively membrane-associated.  相似文献   

13.
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.  相似文献   

14.
Calmyrin is a myristoylated calcium binding protein that contains four putative EF-hands. Calmyrin interacts with a number of proteins, including presenilin-2 (PS2). However, the biophysical properties of calmyrin, and the molecular mechanisms that regulate its binding to different partners, are not well understood. By site-directed mutagenesis and Ca2+ binding studies, we found that calmyrin binds two Ca2+ ions with a dissociation constant of approximately 53 microM, and that the two C-terminal EF-hands 3 and 4 bind calcium. Using ultraviolet spectroscopy, circular dichroism (CD), and NMR, we found that Ca(2+)-free and -bound calmyrin have substantially different protein conformations. By yeast two-hybrid assays, we found that both EF-hands 3 and 4 of calmyrin must be intact for calmyrin to interact with PS2-loop sequences. Pulse-chase studies of HeLa cells transfected with calmyrin expression constructs indicated that wild-type (Wt) calmyrin has a half-life of approximately 75 min, whereas a mutant defective in myristoylation turns over more rapidly (half-life of 35 min). By contrast, the half-lives of calmyrin mutants with a disrupted EF-hand 3 or EF-hand 4 were 52 and 170 min, respectively. Using immunofluorescence staining of HeLa cells transfected with Wt and mutant calmyrin cDNAs, we found that both calcium binding and myristoylation are important for dynamic intracellular targeting of calmyrin. Double immunofluorescence microscopy indicated that Wt and myristoylation-defective calmyrin proteins colocalize efficiently and to the same extent with PS2, whereas calmyrin mutants defective in calcium binding display less colocalization with PS2. Our results suggest that calmyrin functions as a calcium sensor and that calcium binding sequences in calmyrin are important for interaction with the PS2 loop.  相似文献   

15.
Chondrocytes from pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1) patients display an enlarged rough endoplasmic reticulum that accumulates extracellular matrix proteins, including cartilage oligomeric matrix protein (COMP). Mutations that cause PSACH and EDM1 are restricted to a 27-kDa Ca(2+) binding domain (type 3 repeat). This domain has 13 Ca(2+)-binding loops with a consensus sequence that conforms to Ca(2+)-binding loops found in EF hands. Most disease-causing mutations are found in the 11-kDa C-terminal region of this domain. We expressed recombinant native and mutant forms of the type 3 repeat domain (T3) and its 11-kDa C-terminal region (T3-Cterm). T3 and T3-Cterm bind approximately 13 and 8 mol of Ca(2+)/mol of protein, respectively. CD, one-dimensional proton, and two-dimensional (1)H-(15)N HSQC spectra of Ca(2+)-bound T3-Cterm indicate a distinct conformation that has little helical secondary structure, despite the presence of 13 EF hand Ca(2+)-binding loops. This conformation is also formed within the context of the intact T3. 19 cross-peaks found between 9.0 and 11.4 ppm are consistent with the presence of strong hydrogen bonding patterns, such as those in beta-sheets. Removal of Ca(2+) leads to an apparent loss of structure as evidenced by decreased dispersion and loss of all down field resonances. Deletion of Asp-470 (a mutation found in 22% of all PSACH and EDM1 patients) decreased the Ca(2+)-binding capacity of both T3 and T3-Cterm by about 3 mol of Ca(2+)/mol of protein. Two-dimensional (1)H-(15)N HSQC spectra of mutated T3-Cterm showed little evidence of defined structure in the presence or absence of Ca(2+). The data demonstrate that Ca(2+) is required to nucleate folding and to maintain defined structure. Mutation results in a partial loss of Ca(2+)-binding capacity and prevents Ca(2+)-dependent folding. Persistence of an unstructured state of the mutated Ca(2+) binding domain in COMP is the structural basis for retention of COMP in the rough endoplasmic reticulum of differentiated PSACH and EDM1 chondrocytes.  相似文献   

16.
Sorcin, a 21.6 kDa cytosolic EF-hand protein which undergoes a Ca(2+)-induced translocation from cytoplasm to membranes, has been assigned to the newly defined penta EF-hand family. A molecular model of the C-terminal Ca(2+)-binding domain has been generated using as a template the X-ray coordinates of the corresponding domain in the calpain light subunit, the family prototype [Lin, G., et al. (1997) Nat. Struct. Biol. 4, 539-546]. The model indicates that in sorcin the three-dimensional structure is conserved and in particular that of EF1, the novel EF-hand motif characteristic of the family. On this basis, two stable fragments have been obtained and characterized. Just like the native protein, the sorcin Ca(2+)-binding domain (residues 33-198) is largely dimeric, interacts with the ryanodine receptor at physiological calcium concentrations, and undergoes a reversible, Ca(2+)-dependent translocation from cytosol to target proteins on Escherichia coli membranes. In contrast, the 90-198 fragment (residues 90-198), which lacks EF1 and EF2, does not bind Ca(2+) with high affinity and is unable to translocate. Binding of calcium to the EF1-EF2 pair is therefore required for the activation of sorcin which uses the C-terminal calcium-binding domain for interaction with the ryanodine receptor, a physiological target in muscle cells.  相似文献   

17.
The localizations of three members of the neuronal calcium sensor (NCS) family were studied in HeLa cells. Using hippocalcin-EYFP and NCS-1-ECFP, it was found that their localization differed dramatically in resting cells. NCS-1 had a distinct predominantly perinuclear localization (similar to trans-Golgi markers), whereas hippocalcin was present diffusely throughout the cell. Upon the elevation of intracellular Ca(2+), hippocalcin rapidly translocated to the same perinuclear compartment as NCS-1. Another member of the family, neurocalcin delta, also translocated to this region after a rise in Ca(2+) concentration. Permeabilization of transfected cells using digitonin caused loss of hippocalcin and neurocalcin delta in the absence of calcium, but in the presence of 10 microm Ca(2+), both proteins translocated to and were retained in the perinuclear region. NCS-1 localization was unchanged in permeabilized cells regardless of calcium concentration. The localization of NCS-1 was unaffected by mutations in all functional EF hands, indicating that its localization was independent of Ca(2+). A minimal myristoylation motif (hippocalcin-(1-14)) fused to EGFP resulted in similar perinuclear targeting, showing that localization of these proteins is because of the exposure of the myristoyl group. This was confirmed by mutation of the myristoyl motif of NCS-1 and hippocalcin that resulted in both proteins remaining cytosolic, even at elevated Ca(2+) concentration. Dual imaging of hippocalcin-EYFP and cytosolic Ca(2+) concentration in Fura Red-loaded cells demonstrated the kinetics of the Ca(2+)/myristoyl switch in living cells and showed that hippocalcin rapidly translocated with a half-time of approximately 12 s after a short lag period when Ca(2+) was elevated. These results demonstrate that closely related Ca(2+) sensor proteins use their myristoyl groups in distinct ways in vivo in a manner that will determine the time course of Ca(2+) signal transduction.  相似文献   

18.
Sorcin is a typical penta-EF-hand protein that participates in Ca2+-regulated processes by translocating reversibly from cytosol to membranes, where it interacts with different target proteins in different tissues. Binding of two Ca2+/monomer triggers translocation, although EF1, EF2, and EF3 are potentially able to bind calcium at micromolar concentrations. To identify the functional pair, the conserved bidentate -Z glutamate in these EF-hands was mutated to yield E53Q-, E94A-, and E124A-sorcin, respectively. Limited structural perturbations occur only in E124A-sorcin due to involvement of Glu-124 in a network of interactions that comprise the long D helix connecting EF3 to EF2. The overall affinity for Ca2+ and for two sorcin targets, annexin VII and the ryanodine receptor, follows the order wild-type > E53Q- > E94A- > E124A-sorcin, indicating that disruption of EF3 has the largest functional impact and that disruption of EF2 and EF1 has progressively smaller effects. Based on this experimental evidence, EF3 and EF2, which are not paired in the canonical manner, are the functional EF-hands. Sorcin is proposed to be activated upon Ca2+ binding to EF3 and transmission of the conformational change at Glu-124 via the D helix to EF2 and from there to EF1 via the canonical structural/functional pairing. This mechanism may be applicable to all penta-EF-hand proteins.  相似文献   

19.
Ozawa T  Fukuda M  Nara M  Nakamura A  Komine Y  Kohama K  Umezawa Y 《Biochemistry》2000,39(47):14495-14503
We investigated the relationship between metal ion selective conformational changes of recoverin and its metal-bound coordination structures. Recoverin is a 23 kDa heterogeneously myristoylated Ca(2+)-binding protein that inhibits rhodopsin kinase. Upon accommodating two Ca(2+) ions, recoverin extrudes a myristoyl group and associates with the lipid bilayer membrane, which was monitored by the surface plasmon resonance (SPR) technique. Large changes in SPR signals were observed for Sr(2+), Ba(2+), Cd(2+), and Mn(2+) as well as Ca(2+), indicating that upon binding to these ions, recoverin underwent a large conformational change to extrude the myristoyl group, and thereby interacted with lipid membranes. In contrast, no SPR signal was induced by Mg(2+), confirming that even though it accommodates two Mg(2+) ions, recoverin does not induce the large conformational change. To investigate the coordination structures of metal-bound Ca(2+) binding sites, FT-IR studies were performed. The EF-hands, Ca(2+)-binding regions each comprising 12 residues, arrange to coordinate Ca(2+) with seven oxygen ligands, two of which are provided by a conserved bidentate Glu at the 12th relative position in the EF-hand. FT-IR analysis confirmed that Sr(2+), Ba(2+), Cd(2+), and Mn(2+) were coordinated to COO(-) of Glu by a bidentate state as well as Ca(2+), while coordination of COO(-) with Mg(2+) was a pseudobridging state with six-coordinate geometry. These SPR and FT-IR results taken together reveal that metal ions with seven-coordinate geometry in the EF-hands induce a large conformational change in recoverin so that it extrudes the myristoyl group, while metal ions with six-coordinate geometry in the EF-hands such as Mg(2+) remain the myristoyl group sequestered in recoverin.  相似文献   

20.
The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca(2+)-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in higher hydrophobicity, and in elevated thermal stability (its thermal transition shifts by 15 degrees C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca(2+)-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca(2+)-binding sites, respectively, are modified and damaged) are practically indifferent to calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号