首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The functional integrity of the QUTB gene (encoding quinate dehydrogenase) has been confirmed by transformation of a qutB mutant strain. The DNA sequence of the contiguous genes QUTD (quinate permease), QUTB and QUTG (function unknown) has been determined and analysed, together with that of QUTE (catabolic 3-dehydroquinase). The QUTB sequence shows significant homology with the shikimate dehydrogenase function of the complex AROM locus of Aspergillus nidulans, and with the QA-3 quinate dehydrogenase and QA-1S (repressor) genes of Neurospora crassa. The QUTD gene shows strong homology with the N. crassa QA-Y gene and QUTG with the QA-X gene. QUTD, QUTB, and QUTG, QUTE form two pairs of divergently transcribed genes, and conserved sequence motifs identified in the two common 5 non-coding regions show significant homology with UAS GAL and UAS QA sequences of the Saccharomyces cerevisiae and N. crassa Gal and QA systems. In addition, conserved 5 sequences homologous to the mammalian CAAT box are noted and a previously unreported conserved 22 nucleotide motif is presented.  相似文献   

2.
A large number of quinic acid non-utilizing qut mutants of Aspergillus nidulans deficient in the induction of all three quinic acid specific enzymes have been analysed. One class the qutD mutants, are all recessive and are non-inducible at pH 6.5 due to inferred deficiency in a quinate ion permease. Two regulatory genes have been identified. The QUTA gene encodes an activator protein since most qutA mutants are recessive and non-inducible although a few fully dominant mutants have been found. The QUTR gene encodes a repressor protein since recessive mutations are constitutive for all three enzyme activities. Rare dominant non-inducible mutants which revert readily to yield a high proportion of constitutive strains are inferred to be qutR mutants defective in binding the inducer. The gene cluster has been mapped in the right arm of chromosome VIII in the order: centromere - greater than 50 map units - ornB - 12 map units - qutC (dehydratase)-0.8 map units-qutD (permease), qutB (dehydrogenase), qutE (dehydroquinase), qutA (activator)-4.4 map units - qutR (repressor)-20 map units - galG. This organization differs from that of the qa gene cluster in Neurospora crassa, particularly in the displacement of qutC and qutR.  相似文献   

3.
4.
The clustered prnB, prnC, and prnD genes are repressed by the simultaneous presence of glucose and ammonium. A derepressed mutation inactivating a CreA-binding site acts in cis only on the permease gene (prnB) while derepression of prnD and prnC is largely the result of reversal of inducer exclusion.  相似文献   

5.
6.
Organization of the ribosomal RNA gene cluster in Aspergillus nidulans   总被引:3,自引:0,他引:3  
DNA coding for ribosomal RNA in Aspergillus nidulans was found to consist of a unit 7.8 kb in size which is tandemly repeated in the genome and codes for 5.8S, 18S and 26S rRNA. The repeat unit has been cloned, and its restriction map and the location of the individual rRNA coding sequences within the unit have been established.  相似文献   

7.
8.
9.
10.
11.
Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains.  相似文献   

12.
13.
The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.  相似文献   

14.
Characterization of prtADelta mutants, generated by gene disruption, showed that the prtA gene is responsible for the majority of extracellular protease activity secreted by Aspergillus nidulans at both neutral and acid pH. The prtA delta mutation was used to map the prtA gene to chromosome V. Though aspartic protease activity has never been reported in A. nidulans and the prtADelta mutants appear to lack detectable acid protease activity, a gene (prtB) encoding a putative aspartic protease was isolated from this species. Comparison of the deduced amino acid sequence of PrtB to the sequence of other aspergillopepsins suggests that the putative prtB gene product contains an eight-amino-acid deletion prior to the second active site Asp residue of the protease. RT-PCR experiments showed that the prtB gene is expressed, albeit at a low level.  相似文献   

15.
16.
17.
18.
19.
Momany M  Zhao J  Lindsey R  Westfall PJ 《Genetics》2001,157(3):969-977
Members of the septin gene family are involved in cytokinesis and the organization of new growth in organisms as diverse as yeast, fruit fly, worm, mouse, and human. Five septin genes have been cloned and sequenced from the model filamentous fungus A. nidulans. As expected, the A. nidulans septins contain the highly conserved GTP binding and coiled-coil domains seen in other septins. On the basis of hybridization of clones to a chromosome-specific library and correlation with an A. nidulans physical map, the septins are not clustered but are scattered throughout the genome. In phylogenetic analysis most fungal septins could be grouped with one of the prototypical S. cerevisiae septins, Cdc3, Cdc10, Cdc11, and Cdc12. Intron-exon structure was conserved within septin classes. The results of this study suggest that most fungal septins belong to one of four orthologous classes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号