首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When pig liver microsomal preparations were incubated with GDP-[14C]mannose, 10–40% of the 14C was transferred to mannolipid and 1–3% to mannoprotein. The transfer to mannolipid was readily reversible and GDP was one of the products of the reaction. It was possible to reverse the reaction by adding excess of GDP and to show the incorporation of [14C]GDP into GDP-mannose. When excess of unlabelled GDP-mannose was added to a partially completed incubation there was a rapid transfer back of [14C]mannose from the mannolipid to GDP-mannose. The other product of the reaction, the mannolipid, had the properties of a prenol phosphate mannose. This was illustrated by its lability to dilute acid but stability to dilute alkali, and by its chromatographic properties. Dolichol phosphate stimulated the incorporation of [14C]mannose into both mannolipid and into protein, although the former effect was larger and more consistent than the latter. The incorporation of exogenous [3H]dolichol phosphate into the mannolipid, and its release, accompanied by mannose, on treatment of the mannolipid with dilute acid, confirmed that exogenous dolichol phosphate can act as an acceptor of mannose in this system. It was shown that other exogenous polyprenol phosphates (but not farnesol phosphate or cetyl phosphate) can substitute for dolichol phosphate in this respect but that they are much less efficient than dolichol phosphate in stimulating the transfer of mannose to protein. Since pig liver contained substances with the chromatographic properties of both dolichol phosphate and dolichol phosphate mannose, which caused an increase in transfer of [14C]mannose from GDP-[14C]mannose to mannolipid, it was concluded that endogenous dolichol phosphate acts as an acceptor of mannose in the microsomal preparation. The results indicate that the mannolipid is an intermediate in the transfer of mannose from GDP-mannose to protein. Some 4% of the mannose of a sample of mannolipid added to an incubation was transferred to protein. A scheme is proposed to explain the variations with time in the production of radioactive mannolipid, mannoprotein, mannose 1-phosphate and mannose from GDP-[14C]mannose that takes account of the above observations. ATP, ADP, UTP, GDP, ADP-glucose and UDP-glucose markedly inhibited the transfer of mannose to the mannolipid.  相似文献   

2.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

3.
A particulate enzyme fraction isolated from yeast (Hansenula holstii) catalyzes the transfer of mannose from GDPmannose to endogenous lipid acceptors. Kinetic studies are presented which suggest that one of the mannolipids is a precursor to cell wall mannan. The solubility and chromatographic properties, the stability to mild alkali, and the release of mannose by mild acid hydrolysis are characteristic of polyisoprenyl phosphoryl mannose. Addition of dolichol phosphate to the enzyme system stimulates the synthesis of a mannolipid with properties similar to that synthesized from endogenous lipid. That the exogenous dolichol phosphate was acting as a mannosyl acceptor was demonstrated by showing that dolichol [32P]phosphate was converted to dolichol [32P]phosphate mannose.  相似文献   

4.
The effects of addition of 1 microM-dexamethasone on the rate of transfer of mannose from GDP-mannose into mannolipid have been studied in HeLa cell cultures. Concurrent with an increase in incorporation of mannose into glycoproteins, the incorporation of mannose from GDP-mannose in vitro into mannolipid and dolichol-linked oligosaccharides was increased after dexamethasone treatment. Stimulation of mannolipid synthesis showed a correlation with the 11 beta, 17 alpha, 21-trihydroxy structure of C21 steroids. Dexamethasone treatment also resulted in an increased incorporation of acetate into dolichol and dolichyl phosphate. The results suggest that the effect of dexamethasone on the cell-surface glycoprotein accumulation is related to increased sugar-linked dolichol synthesis.  相似文献   

5.
When a membrane preparation from the lactating bovine mammary gland is incubated with GDP-[14C] mannose, mannose is incorporated into a [14C] mannolipid, a [Man-14C] oligosaccharide-lipid, and metabolically stable endogenous acceptor(s). The rate of mannosyl incorporation is the fastest into [14C] mannolipid, intermediate in [Man-14C] oligosaccharide-lipid, and least into [Man-14C] endogenous acceptor(s). The [14C] mannolipid has been partially purified and characterized. Mild acid hydrolysis of this compound gives [14C] mannose, whereas alkaline hydrolysis yielded [14C] mannose phosphate as the labeled product. The t½ of hydrolysis of the mannolipid under the acidic and basic conditions are comparable to values obtained for mannosyl phosphoryl dolichol in other systems. The mannolipid is chromatographically indistinguishable from calf brain mannosyl phosphoryl polyisoprenol and chemically synthesized β-mannosyl phosphoryl dolichol. Exogenous dolichol phosphate stimulates the synthesis of mannolipid in mammary particulate preparations 8.5-fold. Synthesis of mannolipid is freely reversible; in the presence of GDP, the transfer of mannosyl moiety from endogenously labeled mannolipid to GDP-mannose is obtained. All of these results indicate that the structure of mannolipid is mannosyl phosphoryl polyisoprenol. Even though the precise chain length of the polyisoprenol portion has not been established, it is tentatively suggested to be dolichol. Partially purified [14C] mannolipid can directly serve as a mannosyl donor in the synthesis of [Man-14C] oligosaccharide-lipid and [Man-14C] endogenous acceptor(s). Pulse and chase kinetics utilizing GDP-mannose to chase the mannosyl transfer from GDP-[14C] mannose in the mammary membrane incubations caused an immediate and rapid turnover of [14C] mannose from [14C] mannolipid while the incorporation of label in [Man-14C] oligosaccharide-lipid and radioactive endogenous acceptor(s) continued for a short period before coming to a halt. Both gel filtration and electrophoresis indicate that the endogenous acceptor(s) are a mixture of 2 or more glycoproteins since incubation with proteases releases all of the radioactivity into water soluble low-molecular-weight components, perhaps glycopeptides. All of the above evidence is consistent with the following precursor-product relationship: GDP-mannose ? mannosyl phosphoryl polyisoprenol → mannosyl-oligosaccharide-lipid → mannosyl-proteins. The exact structure of the oligosaccharide-lipid and the endogenous glycoproteins is unknown.  相似文献   

6.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

7.
The Mn-2+ dependent mannosyl transfer reaction between GDP-[14-C]mannose and dolichol phosphate, which is catalyzed by liver membranes, could not be followed accurately with the existing assay systems. Thus, GDP-[14-C]mannose is hydrolyzed rapidly by a pyrophosphatase present in microsomal and Golgi fractions from liver cells. The rate of the hydrolysis is rapid enough to limit the extent of incorporation of [14-c]mannose into endogenous acceptors. AMP was an effective inhibitor of the pyrophosphatase in Golgi membranes, and protected GDP-mannose from metabolism in alternative pathways. In the presence of AMP it was possible accurately to follow the time course of synthesis of dolichol phosphate [14-c]mannose over short time periods. Even though the time course of the reaction was measured over 2 s intervals, no linear portion could be detected in plots of product formed versus time. The kinetics of synthesis did, however, fit an equation for a first-order kinetic process. The basis for the first-order kinetics seems related to the very small amounts of dolichol phosphate in membranes. The values of the first-order rate constant is dependent on the concentrations of GDP-mannose and Mn-2+ added to the assays.  相似文献   

8.
Abstract— Mannose was transferred from GDP-[14C]mannose by homogenates of embryonic chick and adult rat brain to mannolipids with properties identical to manriosyl-phosphoryl-dihydropolyisoprenols. Embryonic chick brain formed six-fold larger quantities of mannolipid than adult rat brain. The reaction was stimulated by Mn2+ ions and Triton X-100 but inhibited by EDTA. Phosphoenolpyruvic acid had no effect on the reaction. A crude mitochondrial fraction was two to three times more active than the microsomal fraction. All radioactivity in the mannolipid could be displaced by the addition of non-radioactive GDP-mannose. The endogenous lipid acceptor in brain was readily labelled in vivo by injection of [3H]mevalonate into the amniotic sac of 7-day-old embryos. The mannolipid formed had the properties of an acidic phospholipid on column and TLC, was stable to dilute alkali but readily cleaved by dilute acid. Synthesis was markedly stimulated by the addition of pig liver or calf brain dolichol phosphate in the presence of Triton X-100 and Mn2+. The mannolipid so formed displayed chemical characteristics identical to the endogenous lipid acceptor. Incubation of the purified radioactive mannolipid with the 'post-nuclear' fraction from 14-day-old embryonic chick brain in the presence of EDTA and Triton X-100 resulted in the transfer of 40-50 per cent of the radioactive mannose to protein and 40-45 per cent to water soluble compounds. The efficiency of transfer of radioactivity from endogenously formed mannolipid with or without the addition of dolichol phosphate was similar to exogenously added highly purified mannolipid. These results are compatible with the hypothesis that synthesis of the mannose core of brain glycoproteins involves the synthesis first of mannosyl-phosphoryl-dolichols followed by transfer of the mannose to glycoprotein.  相似文献   

9.
In the absence of detergent, the transfer of mannose from GDP-mannose to rat liver microsomal vesicles was highly stimulated by exogenous retinyl phosphate in incubations containing bovine serum albumin, as measured in a filter binding assay. Under these conditions 65% of mannose 6-phosphatase activity was latent. The transfer process was linear with time up to 5min and with protein concentration up to 1.5mg/0.2ml. It was also temperature-dependent. The microsomal uptake of mannose was highly dependent on retinyl phosphate and was saturable against increasing amounts of retinyl phosphate, a concentration of 15mum giving half-maximal transfer. The uptake system was also saturated by increasing concentrations of GDP-mannose, with an apparent K(m) of 18mum. Neither exogenous dolichyl phosphate nor non-phosphorylated retinoids were active in this process in the absence of detergent. Phosphatidylethanolamine and synthetic dipalmitoylglycerophosphocholine were also without activity. Several water-soluble organic phosphates (1.5mm), such as phenyl phosphate, 4-nitrophenyl phosphate, phosphoserine and phosphocholine, did not inhibit the retinyl phosphate-stimulated mannosyl transfer to microsomes. This mannosyl-transfer activity was highest in microsomes and marginal in mitochondria, plasma and nuclear membranes. It was specific for mannose residues from GDP-mannose and did not occur with UDP-[(3)H]galactose, UDP- or GDP-[(14)C]glucose, UDP-N-acetyl[(14)C]-glucosamine and UDP-N-acetyl[(14)C]galactosamine, all at 24mum. The mannosyl transfer was inhibited 85% by 3mm-EDTA and 93% by 0.8mm-amphomycin. At 2min, 90% of the radioactivity retained on the filter could be extracted with chloroform/methanol (2:1, v/v) and mainly co-migrated with retinyl phosphate mannose by t.l.c. This mannolipid was shown to bind to immunoglobulin G fraction of anti-(vitamin A) serum and was displaced by a large excess of retinoic acid, thus confirming the presence of the beta-ionone ring in the mannolipid. The amount of retinyl phosphate mannose formed in the bovine serum albumin/retinyl phosphate incubation is about 100-fold greater than in incubations containing 0.5% Triton X-100. In contrast with the lack of activity as a mannosyl acceptor for exogenous dolichyl phosphate in the present assay system, endogenous dolichyl phosphate clearly functions as an acceptor. Moreover in the same incubations a mannolipid with chromatographic properties of retinyl phosphate mannose was also synthesized from endogenous lipid acceptor. The biosynthesis of this mannolipid (retinyl phosphate mannose) was optimal at MnCl(2) concentrations between 5 and 10mm and could not be detected below 0.6mm-MnCl(2), when synthesis of dolichyl phosphate mannose from endogenous dolichyl phosphate was about 80% of optimal synthesis. Under optimal conditions (5mm-MnCl(2)) endogenous retinyl phosphate mannose represented about 20% of dolichyl phosphate mannose at 15min of incubation at 37 degrees C.  相似文献   

10.
A crude membrane preparation of the unicellular green alga Chlamydomonas reinhardii was found to catalyse the incorporation of D-[14C]mannose from GDP-D-[14C]-mannose into a chloroform/methanol-soluble compound and into a trichloroacetic acid-insoluble polymer fraction. The labelled lipid revealed the chemical and chromatographic properties of a short-chain (about C55-C65) alpha-saturated polyprenyl mannosyl monophosphate. In the presence of detergent both long-chain (C85-C105) dolichol phosphate and alpha-unsaturated undecaprenyl phosphate (C55) were found to be effective as exogenous acceptors of D-mannose from GDP-D-[14C]mannose to yield their corresponding labelled polyprenyl mannosyl phosphates. Exogenous dolichyl phosphate stimulated the incorporation of mannose from GDP-D-[14C]mannose into the polymer fraction 5-7-fold, whereas the mannose moiety from undecaprenyl mannosyl phosphate was not further transferred. Authentic dolichyl phosphate [3H]mannose and partially purified mannolipid formed from GDP-[14C]mannose and exogenous dolichyl phosphate were found to function as direct mannosyl donors for the synthesis of labelled mannoproteins. These results clearly indicate the existence of dolichol-type glycolipids and their role as intermediates in transglycosylation reactions of this algal system. Both the saturation of the alpha-isoprene unit and the length of the polyprenyl chain may be regarded as evolutionary markers.  相似文献   

11.
Cutinase, a glycoprotein containing O-glycosidically linked carbohydrates, is induced in glucose-grown Fusarium solani f. pisi by cutin hydrolysate. Microsomal preparations from the induced cells catalyzed mannosyl transfer from GDP-mannose to glycolipid and glycoprotein fractions but not into oligosaccharide lipids. Maximal rates of mannosyl transfer into glycolipids and glycoproteins were obtained with 5 mm Mg2+ and 10 mm Mn2+, respectively. Mannosyl transfer into glycolipids and glycoproteins showed pH optima of 8.0 and 7.0, respectively, and both transfers showed an apparent Km of about 2 μm for GDP-mannose. The mannosyl lipid was identified as β-d-mannosyl phosphoryl dolichol by thinlayer and ion-exchange chromatography, as well as by analyses of the products derived from it by acid and base treatments. The fungal microsomal preparation also catalyzed mannosyl transfer from GDP-mannose to exogenous dolichol phosphate. This transfer was stimulated maximally by 0.09% Triton X-100 and showed a pH optimum at pH 8.0. The apparent Km values for dolichol phosphate and GDP-mannose were 120 and 2.3 μm, respectively. The product derived from exogenous dolichol phosphate was identified as β-d-mannosyl phosphoryl dolichol as indicated above. The endogenous mannosyl acceptor lipid from this fungus was isolated by DEAE-cellulose chromatography. Analysis of the p-nitrobenzoyl derivatives of the base hydrolysis products of this acceptor lipid by highperformance liquid chromatography showed that the major components of this dolichol were C95 and C100. The microsomal preparation also catalyzed the transfer of mannose from exogenous mannosyl phosphoryl dolichol to glycoproteins with a pH optimum of 7.5 and an apparent Km of 1.7 μm. Analyses of the β-elimination products of the glycoproteins generated from both GDP-mannose and dolichol phosphoryl mannose showed that single mannosyl residues were transferred to hydroxyl groups of the endogenous proteins. Exogenous cutinase was not glycosylated even after denaturation, sulfitolysis, or removal of carbohydrates by HF hydrolysis. Sodium dodecyl sulfate electrophoresis indicated that cutinase and its possible precursors were among the in vitro glycosylation products. Bacitracin and amphomycin but not tunicamycin inhibited the mannosyl transfer reactions.  相似文献   

12.
The microsomal fraction of insects was found to contain an enzyme which transfers mannose from guanosine diphosphate mannose to an endogenous or exogenous insect lipid and to other acceptors such as dolichol monophosphate or ficaprenol monophosphate. This activity depended on the presence of Triton X-100 and magnesium ions, the optimal concentration of the latter being 10mM. The optimal temperature of the reaction was 25 degrees C and the maximal activity was obtained at pH 7.9. The mannolipid formed behaved as a monophosphodiester when chromatographed on DEAE-cellulose. Weak acid treatment of the product liberated mannose. Its behaviour both on thin layer and Sephadex G-150 chromatography would indicate the presence of a number of isoprenyl units similar to the dolichol and different from the ficaprenol derivative. Stability to phenol treatment indicated that the lipid fraction of the mannolipid is an alpha-saturated polyprenol phosphate similar to dolichol monophosphate.  相似文献   

13.
Summary The microsomal fraction of insects was found to contain an enzyme which transfers mannose from guanosine diphosphate mannose to an endogenous or exogenous insect lipid and to other acceptors such as dolichol monophosphate or ficaprenol monophosphate. This activity depended on the presence of Triton X-100 and magnesium ions, the optimal concentration of the latter being 10mM. The optimal temperature of the reaction was 25 °C and the maximal activity was obtained at pH 7.9. The mannolipid formed behaved as a monophosphodiester when chromatographed on DEAE-cellulose. Weak acid treatment of the product liberated mannose. Its behaviour both on thin layer and Sephadex G-150 chromatography would indicate the presence of a number of isoprenyl units similar to the dolichol and different from the ficaprenol derivative. Stability to phenol treatment indicated that the lipid fraction of the mannolipid is an±-saturated polyprenol phosphate similar to dolichol monophosphate.Abbreviations DoIMP dolichol monophosphate - FMP ficaprenol monophosphate - IGAL insect glycosyl acceptor lipid Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

14.
A particulate membrane preparation fromSaccharomyces cerevisiae catalyzed the incorporation of mannose from GDP-mannose into lipids that were extractable in chloroform-methanol. One lipid has been previously characterized as dolichyl phosphomannose. Another one was purified by chromatography on silicic acid, DEAE-cellulose and Sephadex LH-20 and found to be alkali unstable. The lipid moiety was shown to be dolichol and the glycosydic part contained mannose, glucose and glucosamine.Radioactive mannose was also incorporated at a slower rate into more polar compounds. They were soluble in chloroform-methanol-water and were seen to liberate neutral oligosaccharides after alkaline hydrolysis.Radioactive mannose was also incorporated into substances which behave chemically as glycoproteins since they were insoluble in organic solvents, water and trichloroactic acid. Pronase treatment of the trichloroacetic acidinsoluble material released water-soluble oligosaccharides.When the particulate preparation which had been extracted with chloroform-methanol at –20 C, was incubated with GDP-(U-14C)mannose, radioactivity was incorporated into glycolipids that were soluble in chloroform-methanol-water and into glycoproteins. This result suggests that at least part of the mannose was transferred to endogenous acceptors independent of dolichyl phosphomannose.  相似文献   

15.
Endogenous dolichol was shown to function as a natural acceptor of mannose residues by using regenerating rat liver containing [(3)H]dolichol. When subcellular fractions from this liver were incubated with GDP-[(14)C]mannose a double-labelled lipid, which represented 30% of the total [(14)C]mannolipid, could be isolated. This lipid was shown to be identical with the dolichol phosphate mannose formed from exogenous dolichol phosphate, by chromatography, stability to alkali and by chemical cleavage to mannose and dolichol derivatives. It was formed by the rough endoplasmic reticulum and mitochondria. If it is concerned in glycoprotein synthesis this would suggest that it functions in the formation of both secreted and mitochondrial glycoproteins. When both the dolichol and retinol of rat tissue were radioactive they made similar contributions to the synthesis of the lipid by liver microsomal fractions and intestinal epithelial cells.  相似文献   

16.
A particulate enzyme from bovine aorta catalyzes the incorporation of mannose from GDP-D-[14C]mannose into three products as follows: 1. Most of the radioactivity which is incorporated in short term incubations is into a product that is soluble in CHCl3/CH3OH (2/1, v/v). This product was purified by chromatography on DEAE-cellulose and Sephadex LH-20. The purified glycolipid was stable to alkaline saponification but released [14C]mannose when subjected to mild acid hydrolysis (1/2 = 7 min at 100 degrees in 0.01 N HCl). The purified glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did glycolipid had the same mobility on silica gel plates in an acidic, basic, or neutral solvent system as did authentic dolichyl mannopyranosyl phosphate. The synthesis of the 14C-mannolipid was reversed by the addition of GDP and Mg2+. 2. [14C]mannose is also incorporated, although at a slower rate into products which are soluble in CHCl3/CH3OH/H2O (1/1/0.3, v/v). When the 1/10.3 soluble material was chromatographed on Avicel plates, it gave rise to three distinct radioactive bands which appear to be lipid-linked oligosaccharides. Mild acid hydrolysis of the 1/10.3 soluble material released water-soluble, neutral 14C-oligosaccharides which eluted from Sephadex G-50 in two or three peaks between the standards cytochrome c and GDP-mannose...  相似文献   

17.
A particulate fraction from calf thyroid catalyzes the transfer of mannose from GDP-mannose to exogenous glycopeptides and methyl or aryl glycosides to form alpha-D-mannopyranosyl-D-mannose sequences. The transfer to the simple glycosides required a single nonreducing mannose residue linked to a lipophilic aglycone. Thus p-nitrophenyl-, 4-methylumbelliferyl-, phenyl- and methyl-alpha-D-mannopyranosides were effective acceptors while free mannose and glycosides of several other sugars were totally inactive. The Km value for methyl-alpha-D-mannopyranoside was 2.6 mM. Specificity for the anomeric configuration of the acceptor was glycosylated to the extent of 50% of the alpha anomer and mutual inhibition between these two acceptors was observed. Acetolysis or mild acid hydrolysis of the 14C-labeled products from the glycoside acceptors yielded the disaccharide, 2-O-alpha-D-mannopyranosyl-D-mannose, which represents the predominant linkage between mannose residues in the carbohydrate unit A of thyroglobulin. Glycopeptides with mannose sequences served as acceptors for the transfer reaction but only after dinitrophenylation of their peptide portion. The unit A glycopeptides of thyroglobulin with 10 mannose residues (Km equals 0.89 mM) were much better acceptors than glycopeptides containing the core portion of unit B which contains only three mannose components. Reduction in size of unit A glycopeptide acceptors by timed alpha-mannosidase treatment resulted in a progressive decrease in activity. Peptide-free unit A was inactive even after it was modified to carry dinitrophenyl groups on its glucosamine residues. GDP-mannose was the most effective glycosyl donor, with a Km value of 1.4 muM for methyl-alpha-D-mannopyranoside and 0.30 muM for dinitrophenyl unit A glycopeptides, although ADP- and UDP-mannose could substitute to the extent of 40 to 45%. The mannose transfer to the glycopeptides had a optimum of 6.3 while that to the simple glycopeptides was best at pH 7.0. Both types of transfer reactions required a divalent cation with manganese serving most effectively in that capacity. Mannoslytransferase activity for both groups of acceptors was found predominantly in particulate subcellular fractions. A number of aromatic compounds and reagents which are disruptive of membrane integrity caused loss of enzyme activity presumably by interfering with the function of the lipophilic substituents on the various acceptors.  相似文献   

18.
Microsomal membrane preparations from rat livers, when incubated with labelled sugar-nucleotides, were shown to synthesize labelled oligosaccharide-lipids in the presence of excess exogenous dolichyl phosphate. Under the incubation conditions defined in the present study, dolichyl pyrophosphoryl(DolPP)GlcNAc2-Man5, DolPPGlcNAc2Man9 and DolPPGlcNAc2Man9Glc3 were the principal oligosaccharide-lipids formed by both control and vitamin A-deficient membranes. However, deficient membranes synthesized 3.2 +/- 0.8 times as much oligosaccharide-lipids and 2.6 +/- 0.7 times as much dolichyl phosphate mannose (DolPMan) and dolichyl phosphate glucose (DolPGlc) as the controls. The transfer of the oligosaccharide chain from the dolichol carrier to the endogenous protein acceptors in vitamin A-deficient microsomes (microsomal fractions) was only 57.5 +/- 9.5% of that of controls. After endo-beta-N-acetylglucosaminidase treatment, only one oligosaccharide species was isolated from both control and vitamin A-deficient microsomal glycoproteins, and was characterized as GlcNAcMan9Glc3. We conclude that the decreased incorporation of labelled mannose and glucose from sugar-nucleotides into the glycoproteins must be due to decreased transfer of GlcNAc2Man9Glc3 from the dolichol carrier to the protein acceptors. This conclusion was further substantiated by the finding that control membranes transferred 4-6 times as much labelled oligosaccharides from exogenously added dolichol-linked substrate (DolPPGlcNAc2Man9Glc3) to endogenous microsomal protein acceptors as compared with the vitamin A-deficient membranes. Attempts to reverse this defect by addition of retinol or retinyl phosphate (a source of retinyl phosphate mannose) to the incubations were unsuccessful.  相似文献   

19.
Incubation of a mixed membrane fraction isolated from C. albicans yeast cells with Nonidet P-40 at a detergent/protein ratio as low of 0.025 (0.016–0.019%, w/v) yielded a soluble fraction that catalyzed the transfer of mannose from GDP-[14C] Man into dolichol phosphate mannose and from this intermediate into mannoproteins. Over 95% of the sugar in mannoproteins was O-linked as judged from its release after -elimination. Mannose was identified as the sole product after this treatment. Transfer activity did not depend on exogenous lipid acceptor indicating that the latter was solubilized along with the mannosyl transferases. Synthesis of mannolipid and mannoproteins occurred at optima temperatures of 20 °C and 37 °C, respectively, and at a pH in the range of 7.5-9.5. Mannosyl transfer into the mannolipid was stimulated by Mg2+and inhibited by Ca2+and Mn2+whereas mannoprotein labeling was stimulated by Mn2+and to a lower extent by Mg2+. When measured as a function of substrate concentration, the synthesis of the mannolipid was a nearly linear function of GDP-Man concentration in the range of 5 to 32 M whereas protein mannosylation exhibited hyperbolic kinetics with saturation reached at about 10 M. The solubilized preparation was able to utilize an exogenous source of mannolipid as sugar donor for protein mannosylation. Dinucleotides and, to a higher extent trinucleotides, inhibited mannosyl transfer into the mannolipid and hence into mannoproteins.  相似文献   

20.
In the presence of exogenous dolichyl phosphate mannosyl transferase activity towards dolichyl phosphate was nearly 3-fold higher in microsomes from pig embryonic liver compared to that from adult liver. After incubation of microsomes from embryonic liver with UDP-N-acetylglucosamine and GDP-[14C]mannose lipid-linked tri- to undecasaccharides were discovered in CHCl3-CH3OH (2:1, v/v) and CHCl3-CH3OH-H2O (1:1:0.3, by vol) extracts. The main proportion of the radioactivity was incorporated into penta-, sexta and undecasaccharides. Amphomycin at concentration 500 micrograms/ml inhibited almost completely dolichyl phosphate mannose synthesis in embryonic liver microsomes without inhibition the formation of lipid-linked penta- and sextasaccharides. It was suggested that mannose transferred to lipid-linked tetra- to heptasaccharides comes from GDP-mannose but not from dolichyl phosphate mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号