首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

2.
3.
The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.  相似文献   

4.
5.
6.
Garter snakes (genus Thamnophis) rely mainly on chemical cues to recognize prey, but in some of the more aquatic species visual stimuli may suffice to elicit predatory attacks. However, the only visual components known to be involved in the visual release of attacks are movement and contrast with background. We explored other visual components by presenting visual models varying only in size, shape, or path of movement to an aquatically specialized species, Thamnophis melanogaster. Snakes responded preferentially to models consistent in size with natural prey, to models having non-elongate shapes regardless of type of contour (rounded or angular), and to those following paths with vertical, rather than only horizontal, components.  相似文献   

7.
We studied avoidance, by four amphibian prey species (Rana luteiventris, Ambystoma macrodactylum, Pseudacris regilla, Tarichia granulosa), of chemical cues associated with native garter snake (Thamnophis elegans) or exotic bullfrog (R. catesbeiana) predators. We predicted that avoidance of native predators would be most pronounced, and that prey species would differ in the intensity of their avoidance based on relative levels of vulnerability to predators in the wild. Adult R. luteiventris (presumably high vulnerability to predation) showed significant avoidance of chemical cues from both predators, A. macrodactylum (intermediate vulnerability to predation) avoided T. elegans only, while P. regilla (intermediate vulnerability to predation) and T. granulosa (low vulnerability to predation) showed no avoidance of either predator. We assessed if predator avoidance was innate and/or learned by testing responses of prey having disparate levels of prior exposure to predators. Wild‐caught (presumably predator‐exposed) post‐metamorphic juvenile R. luteiventris and P. regilla avoided T. elegans cues, while laboratory‐reared (predator‐naive) conspecifics did not; prior exposure to R. catesbeiana was not related to behavioural avoidance among adult or post‐metamorphic juvenile wild‐reared A. macrodactylum and P. regilla. These results imply that (i) some but not all species of amphibian prey avoid perceived risk from garter snake and bullfrog predators, (ii) the magnitude of this response probably differs according to prey vulnerability to predation in the wild, and (iii) avoidance tends to be largely learned rather than innate. Yet, the limited prevalence and intensity of amphibian responses to predation risk observed herein may be indicative of either a relatively weak predator–prey relationship and/or the limited importance of predator chemical cues in this particular system.  相似文献   

8.
9.
The Contractile Mechanism in Cilia   总被引:5,自引:0,他引:5       下载免费PDF全文
A detailed analysis is made of the motion and the forces in the cilium of Sabellaria over the complete cycle. The results indicate that the stiffness of the cilium is directly related to the moments produced by the internal contractile elements. A sliding filament model is developed to generate the complete cycle of motion. The activation of the force-producing elements, the peripheral fibers, occurs over their entire length at once during the effective stroke. In the recovery stroke the sliding of peripheral fibers relative to each other produces activation. The peripheral fibers contribute to the stiffness of the cilium in the sliding filament model only when they are not free to slide because of cross-linkage. The model describes successfully the motion of a variety of types of cilia.  相似文献   

10.
Among prey-naive Anolis lineatopus from Jamaica, individuals reject ants most commonly, crickets less commonly, and waxmoth larvae almost never. This study investigates the individual differences in the mechanism underlying prey perception in two of many ethotypes found, i.e., cricket-rejectors and cricket-acceptors. In one experiment artificially coloured live waxmoth larvae, crickets and ants were presented, in another experiment crickets and waxmoth larvae were moved passively with different speeds. Ethotypes differ in their evaluation of the interaction of prey key stimuli. Cricket-rejectors and cricket-acceptors differ in their responses to both crickets and waxmoth larvae that were either unicoloured yellow or black, but not in their responses to two types of ants of either colouration. Both ethotypes also differ in their preferences for artificially moved crickets and waxmoth larvae as a function of the interaction of prey type and velocity. In all but two prey items there is interaction in the perceptual pathways concerned. The first presentation in ontogeny of an ant inhibits attack on a cricket presented the next day. Some results suggest that ethotypes differ but gradually in their evaluation of stimuli presented, with cricket-rejectors having a higher threshold for attack. However, other results suggest that cricket-rejectors evaluate certain prey in a way qualitatively different from that of acceptors. At present there is little evidence for an understanding of the ethotypic differences of prey selection at a neural level, probably because neuroethologists have failed to look at individual differences of prey recognition; this failure is discussed in some detail.  相似文献   

11.
Females of the digger wasp species Liris niger paralyzed and layed eggs on six of seven tested cricket species. L. niger females with unmanipulated antennae always rejected the cricket Gryllus bimaculatus, but those without antennal flagella paralyzed and layed eggs on it. Even L. niger females from maggots raised artificially on G. bimaculatus never paralyzed it. L. niger first orients toward a prey visually and then touches the prospective prey briefly with its antennal flagella. This contact determines about the suitability of the prey. The ability to differentiate between prey species required at least one partially unmanipulated antennal flagellum. The responsible sensilla were located on the upper surface of the antennal flagella. Chemical cues which make the cricket Acheta domesticus attractive to L. niger females could be transferred to G. bimaculatus.  相似文献   

12.
13.
The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection.Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly''s standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies.  相似文献   

14.
15.
A previous study (von Brockhusen -Holzer & Curio 1990) had led to the major conclusion that prey-naive Anolis lineatopus hatchlings differ in terms of a “hard-wired” perceptual mechanism underlying the recognition of cricket prey. We reconsider here one result leading to that conclusion since it rested on negative evidence in one treatment group as compared to another. A newly applied discriminant analysis utilizing the complete prey rejection/acceptance data of individuals in the two treatment groups, i.e. cricket-rejectors and prefed cricket-acceptors, again permits the repudiation of a motivation-based alternative hypothesis explaining the rejector-acceptor dichotomy. Thereby we reconfirm the original hypothesis of a “hard-wired”, preprogrammed polyethism underlying prey recognition.  相似文献   

16.
The strong impact of non‐native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non‐native predators found in the Everglades, the African jewelfish, Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer‐established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free‐ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish‐savvy and jewelfish‐naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non‐native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.  相似文献   

17.
对捕食者的认知能力是当前生态学研究的一个热点。一些物种具有对捕食者先天的识别能力,而一些物种必须通过后天学习才能获得对捕食者的认知能力,还有许多动物通过社会学习和文化传播获得对捕食者的识别能力。本文就国外被捕食动物对捕食者的识别的研究进展进行综述,并讨论了该项研究对野外放归工作提供的重要理论意义和应用价值。  相似文献   

18.
Ift88 is a central component of the intraflagellar transport (Ift) complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT) dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88.  相似文献   

19.
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号