首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of octylglucoside (OcGlc) micelles, which stimulate a Mg-specific ATPase activity in chloroplast coupling factor 1 [Pick, U. and Bassilian, S. (1982) Biochemistry, 21, 6144-6152], on the interactions of the enzyme with adenine nucleotides have been studied. 1. OcGlc specifically accelerates the binding and the release of ADP but not of ATP or adenosine 5'[beta, gamma-imido]triphosphate (AdoPP[NH]P) from the tight-sites. The binding affinity for ADP and for ATP is only slightly decreased (twofold) by the detergent. ATP competitively inhibits the binding of ADP and vice versa in the presence or absence of OcGlc. 2.OcGlc-induced inactivation of CF1-ATPase is correlated with the release of bound nucleotides. In the absence of medium nucleotides ADP X CF1 is rapidly inactivated while ATP X CF1 and AdoPP[NH]P X CF1 are slowly inactivated by OcGlc in parallel with the release of bound nucleotide. In contrast, low concentrations of either ATP or ADP in the medium effectively protect against OcGlc inactivation while AdoPP[NH]P, whose binding to CF1 is inhibited by OcGlc, is ineffective even at millimolar concentrations. The results suggest that the occupancy of the tight-sites protects the enzyme against OcGlc-induced inactivation. 3. Mg ions specifically inhibit the release of bound ADP and the OcGlc-induced inactivation of CF1. High concentrations of medium ATP and ADP (K50 = 100 microM) also inhibit the OcGlc-induced release of bound nucleotides in an EDTA medium. In contrast, in the absence of OcGlc, medium ADP and ATP accelerate the release of bound adenine nucleotides. 4. Mg-ATP in the presence of OcGlc stimulates the release of bound ADP from CF1. Bound ATP is neither released nor hydrolyzed at the tight-sites under these conditions where medium ATP is rapidly hydrolyzed. Mg-ADP stimulates the release of bound ADP only in the presence of inorganic phosphate or of phosphate analogs, e.g. arsenate, pyrophosphate or selenate. 5. It is suggested that: (a) ATP and ADP bind to the same tight-sites, but OcGlc activation specifically accelerates the exchange of bound ADP at the site. (b) CF1 contains low affinity adenine nucleotide binding sites which may be the catalytical sites and which influence the tight-sites by cooperative interactions. (c) Mg-ATP in the presence of OcGlc induces a conformational change at the catalytical site which accelerates the release of ADP from the tight-site. The implications of these results to the role of adenine nucleotides in the regulation and mechanism of ATP hydrolysis by CF1 are discussed.  相似文献   

2.
(1)N-4-Azido-2-nitrophenyl-gamma-[3H]aminobutyryl-AdoPP[NH] P(NAP4-AdoPP[NH]P) a photoactivable derivative of 5-adenylyl imidodiphosphate (AdoPP[NH]P), was synthesized. (2) Binding of [3H]NAP4-AdoPP[NH]P to soluble ATPase from beef heart mitochondria (F1) was studied in the absence of photoirradiation, and compared to that of [3H]AdoPP[NH]P. The photoactivable derivative of AdoPP[NH]P was found to bind to F1 with high affinity, like AdoPP[NH]P. Once [3H]NAP4-AdoPP[NH]P had bound to F1 in the dark, it could be released by AdoPP[NH]P, ADP and ATP, but not at all by NAP4 or AMP. Furthermore, preincubation of F1 with unlabeled AdoPP[NH]P, ADP, or ATP prevented the covalent labeling of the enzyme by [3H]NAP4-AdoPP[NH]P upon photoirradiation. (3) Photoirradiation of F1 by [3H]NAP4-AdoPP[NH]P resulted in covalent photolabeling and concomitant inactivation of the enzyme. Full inactivation corresponded to the binding of about 2 mol [3H]NAP4-AdoPP[NH]P/mol F1. Photolabeling by NAP4-AdoPP[NH]P was much more efficient in the presence than in the absence of MgCl2. (4) Bound [3H]NAP4-AdoPP[NH]P was localized on the alpha- and beta- subunits of F1. At low concentrations (less than 10 microM), bound [3H]NAP4-AdoPP[NH]P was predominantly localized on the alpha-subunit; at concentrations equal to, or greater than 75 microM, both alpha- and beta-subunits were equally labeled. (5) The extent of inactivation was independent of the nature of the photolabeled subunit (alpha or beta), suggesting that each of the two subunits, alpha and beta, is required for the activity of F1. (6) The covalently photolabeled F1 was able to form a complex with aurovertin, as does native F1. The ADP-induced fluorescence enhancement was more severely inhibited than the fluorescence quenching caused by ATP. The precentage of inactivation of F1 was virtually the same as the percentage of inhibition of the ATP-induced fluorescence quenching, suggestion that fluorescence quenching is related to the binding of ATP to the catalytic site of F1.  相似文献   

3.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

4.
The purified nickel-containing CO dehydrogenase complex isolated from methanogenic Methanosarcina thermophila grown on acetate is able to catalyze the exchange of [1-14C] acetyl-coenzyme A (CoA) (carbonyl group) with 12CO as well as the exchange of [3'-32P]CoA with acetyl-CoA. Kinetic parameters for the carbonyl exchange have been determined: Km (acetyl-CoA) = 200 microM, Vmax = 15 min-1. CoA is a potent inhibitor of this exchange (Ki = 25 microM) and is formed under the assay conditions because of a slow but detectable acetyl-CoA hydrolase activity of the enzyme. Kinetic parameters for both exchanges are compared with those previously determined for the acetyl-CoA synthase/CO dehydrogenase from the acetogenic Clostridium thermoaceticum. Collectively, these results provide evidence for the postulated role of CO dehydrogenase as the key enzyme for acetyl-CoA degradation in acetotrophic bacteria.  相似文献   

5.
Cold labile extramitochondrial acetyl-CoA hydrolase (dimeric form) purified from rat liver was activated by various nucleoside triphosphates and inhibited by various nucleoside diphosphates. Activation of acetyl-CoA hydrolase by ATP was inhibited by a low concentration of ADP (Ki congruent to 6.8 microM) or a high concentration of AMP (Ki congruent to 2.3 mM). ADP and AMP were competitive inhibitors of ATP. A Scatchard plot of the binding of ATP to acetyl-CoA hydrolase (dimer) at room temperature gave a value of 25 microM for the dissociation constant with at least 2 binding sites/mol of dimer. Cold-treated monomeric enzyme also associated with ATP-agarose, suggesting that the monomeric form of the enzyme also has a nucleotide binding site(s), probably at least 1 binding site/mol of monomer. Phenylglyoxal or 2,3-butanedione, both of which modify arginyl residues of protein, inactivated acetyl-CoA hydrolase. ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by these reagents, while ADP (an inhibitor) greatly (a substratelike, competitive inhibitor), and CoASH (a product) were less effective. However, addition of ADP plus valeryl-CoA (or CoASH) effectively prevented the inactivation by 2,3-butanedione, but that is not the case for phenylglyoxal. These results suggest that one or more arginyl residues are involved in the nucleotide binding site of extramitochondrial acetyl-CoA hydrolase and that their nucleotide binding sites locate near the substrate binding site.  相似文献   

6.
The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50-65 degrees C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. Thermodynamic parameters (delta H degree and delta S degree) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and AMP least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. The nucleotide specificity of the low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P greater than ATP greater than ADP greater than AMP. The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. It is inferred that the low-affinity site is located on the enzyme, more specifically its alpha-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.  相似文献   

7.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

8.
A method for the separation of cyclic AMP from adenosine and polyvalent adenine nucleotides is described. The method consists of the sequential elution of adenosine and cyclic AMP from a single column of acidic aluminum oxide (alumina) with dilute hydrochloric acid and ammonium acetate. Adenosine, adenine, xanthine, and hypoxanthine are rapidly eluted with the application of 0.005 N hydrochloric acid while cyclic AMP remains adsorbed to the alumina. A subsequent application of 0.1 M ammonium acetate elutes more than 90% of the cyclic AMP. Under these conditions, polyvalent nucleotides (AMP, ADP, and ATP) remain adsorbed to the alumina. The method permits the measurement of adenylylcyclase activity using [3H]ATP as the labeled substrate. The same technique can be used to measure the accumulation of cyclic AMP in intact cells after labeling the ATP pool with [3H]adenine. With slight modification, the technique can be used to measure the activity of cyclic-AMP phosphodiesterase using [3H]cyclic AMP as the substrate. The proposed technique provides rapid, highly reproducible assays using inexpensive, disposable columns.  相似文献   

9.
Acetyl-CoA synthetase was purified 800-fold from Bradyrhizobium japonicum bacteroids. A specific activity of 16 mumol/min per mg of protein was achieved, with a 30-40% yield. The purification scheme consisted of only three consecutive chromatography steps. The enzyme has a native Mr of 150,000, estimated by gel-permeation chromatography, and a subunit Mr of 72,000, determined by SDS/polyacrylamide-gel electrophoresis. The optimum pH and temperature are 8.5 and 50 degrees C respectively. The Km values for acetate, CoA and ATP were 146, 202 and 275 microM respectively. The reaction was specific for acetate, as propionate and oleate were used very poorly. Likewise, the enzyme used only ATP, ADP or dATP; AMP, GTP, XTP and UTP could not replace ATP. Acetyl-CoA synthetase showed a broad specificity for metals; MnCl2 could replace MgCl2. In addition, CaCl2 and CoCl2 were approx. 50% as effective as MgCl2, but FeCl3, NiCl2 or ZnCl2 could not effectively substitute for MgCl2. The enzyme may be regulated by NADP+ and pyruvate; no effect was seen of amino acids, glucose catabolites, reduced nicotinamide nucleotides or acetyl-CoA. Inhibition was seen with AMP, PPi, FMN and pyridoxal phosphate, with Ki values of 720, 222, 397 and 1050 microM respectively.  相似文献   

10.
Liver peroxisomal fractions, isolated from rats treated with clofibrate, were shown to hydrolyze added [1-14C]acetyl-CoA to free [1-14C]acetate. [1-14C]Acetyl-CoA was, however, also converted to [14C]acetoacetyl-CoA. This reaction was inhibited by added ATP and by solubilization of the peroxisomes. The effect of ATP on synthesis of [14C]acetoacetyl-CoA was likely due to ATP-dependent stimulation of acetyl-CoA hydrolase (EC 3.1.2.1) activity. The inhibitory effect due to solubilizing conditions of incubation remains unexplained. During peroxisomal beta-oxidation of [1-14C]palmitoyl-CoA, [1-14C]acetyl-CoA, [1-14C]acetate, and [14C]acetoacetyl-CoA were shown to be produced. Possible metabolic implications of peroxisomal acetoacetyl-CoA synthesis are discussed.  相似文献   

11.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

12.
1. We have purified the AMP-activated protein kinase 4800-fold from rat liver. The acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase kinase activities copurify through all six purification steps and are inactivated with similar kinetics by treatment with the reactive ATP analogue fluorosulphonylbenzoyladenosine. 2. The final preparation contains several polypeptides detectable by SDS/polyacrylamide gel electrophoresis, but only one of these, with an apparent molecular mass of 63 kDa, is labelled using [14C]fluorosulphonylbenzoyladenosine. This is also the only polypeptide in the preparation that becomes significantly labelled during incubation with [gamma 32P]ATP. This autophosphorylation reaction did not affect the AMP-stimulated kinase activity. 3. In the absence of AMP the purified kinase has apparent Km values for ATP and acetyl-CoA carboxylase of 86 microM and 1.9 microM respectively. AMP increases the Vmax 3-5-fold without a significant change in the Km for either protein or ATP substrates. 4. The response to AMP depends on the ATP concentration in the assay, but at a near-physiological ATP concentration the half-maximal effect of AMP occurs at 14 microM. Studies with a range of nucleoside monophosphates and diphosphates, and AMP analogues showed that the allosteric activation by AMP was very specific. ADP gave a small stimulation at low concentrations but was inhibitory at high concentrations. 5. These results show that the AMP-activated protein kinase is the major HMG-CoA reductase kinase detectable in rat liver under our assay conditions and that it is therefore likely to be identical to previously described HMG-CoA reductase kinase(s) which are activated by adenine nucleotides and phosphorylation. The AMP-binding and catalytic domains of the kinase are located on a 63-kDa polypeptide which is subject to autophosphorylation.  相似文献   

13.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

14.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

15.
In Methanothrix soehngenii, acetate is activated to acetyl-coenzyme A (acetyl-CoA) by an acetyl-CoA synthetase. Cell extracts contained high activities of adenylate kinase and pyrophosphatase, but no activities of a pyrophosphate:AMP and pyrophosphate:ADP phosphotransferase, indicating that the activation of 1 acetate in Methanothrix requires 2 ATP. Acetyl-CoA synthetase was purified 22-fold in four steps to apparent homogeneity. The native molecular mass of the enzyme from M. soehngenii estimated by gel filtration was 148 kilodaltons (kDa). The enzyme was composed of two subunits with a molecular mass of 73 kDa in an alpha 2 oligomeric structure. The acetyl-CoA synthetase constituted up to 4% of the soluble cell protein. At the optimum pH of 8.5, the Vmax was 55 mumol of acetyl-CoA formed per min per mg of protein. Analysis of enzyme kinetic properties revealed a Km of 0.86 mM for acetate and 48 microM for coenzyme A. With varying amounts of ATP, weak sigmoidal kinetic was observed. The Hill plot gave a slope of 1.58 +/- 0.12, suggesting two interacting substrate sites for the ATP. The kinetic properties of the acetyl-CoA synthetase can explain the high affinity for acetate of Methanothrix soehngenii.  相似文献   

16.
Subunit alpha (Mr 89,000) from vacuolar membrane H+-translocating adenosine triphosphatase of the yeast Saccharomyces cerevisiae was found to bind 8-azido[alpha-32P]adenosine triphosphate. Labeling by this photosensitive ATP derivative was saturable with an apparent dissociation constant of 10(-6) to 10(-5) M and decreased in the presence of ATP and ADP. The enzyme was inactivated by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), with about 1 microM causing half-maximal inactivation in the neutral pH range. This inactivation was prevented by the presence of ATP, ADP, or adenosyl-5'-yl imidodiphosphate (AMP-PNP). The original activity was restored by treating the inactivated enzyme with 2-mercaptoethanol. Kinetic and chemical studies of the inactivation showed that the activity was lost on chemical modification of a single tyrosine residue per molecule of the enzyme. When the enzyme was inactivated with [14C]NBD-Cl, subunit alpha was specifically labeled, and this labeling was completely prevented by the presence of ATP, GTP, ADP, or AMP-PNP. From these results, it was concluded that subunit alpha of yeast vacuolar H+-ATPase has a catalytic site that contains a single, essential tyrosine residue. The kinetics of single site hydrolysis of [gamma-32P]ATP (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100) indicated the formation of an enzyme-ATP complex and subsequent hydrolysis of bound ATP to ADP and Pi at the NBD-Cl-sensitive catalytic site. NBD-Cl inactivated the single site hydrolysis and inhibited the formation of an enzyme-ATP complex. Dicyclohexylcarbodiimide did not affect the single site hydrolysis, but inhibited the enzyme activity under steady-state conditions.  相似文献   

17.
The content of coenzyme A-SH (CoASH) and acetyl-CoA of suspensions of rat heart mitochondria was stabilized by the addition of DL-carnitine and acetyl-DL-carnitine, in the presence of the respiratory inhibitor rotenone. The mitochondrial content of NAD+ and NADH was similarly stabilized by the addition of acetoacetate and DL-3-hydroxybutyrate, and the content of ADP and ATP was imposed by the addition of these nucleotides to the mitochondrial suspension, in the presence of uncoupling agent and oligomycin, to inhibit ATPase. Under these conditions, mitochondrial CoASH/acetyl-CoA, NAD+/ NADH, and ADP/ATP ratios could be varied independently, and the effect on the interconversion of active and inactive pyruvate dehydrogenase could be studied. Decreases in both CoASH/acetyl-CoA and NAD+/NADH ratios were shown to be inhibitory to the steady state activity of pyruvate dehydrogenase, and this effect is described at three different ADP/ATP ratios and different concentrations of added MgCl2. A new steady state level of activity was achieved within 10 min of a change in either CoASH/acetyl-CoA or NAD+/NADH ratio; the rate of inactivation was much higher than the rate of reactivation under these conditions. Effects of CoASH/acetyl-CoA and NAD+/NADH may be additive but are still quantitatively lesser than the changes in activity of pyruvate dehydrogenase induced by changes in ADP/ATP ratio. The variation in activity of pyruvate dehydrogenase with ADP/ATP ratio is described in the absence of changes in the other two ratios, conditions which were not met in earlier studies which employed the oxidation of different substrates to generate changes in all three ratios.  相似文献   

18.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

19.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

20.
Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号