首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl hydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Tissue hypoxia/ischemia are major pathophysiological determinants. Conditions of decreased oxygen availability provoke accumulation and activation of hypoxia-inducible factor-1 (HIF-1). Recent reports demonstrate a crucial role of HIF-1 for inflammatory events. Regulation of hypoxic responses by the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS) is believed to be of pathophysiolgical relevance. It is reported that hypoxic stabilization of HIF-1alpha can be antagonized by NO due to its ability to attenuate mitochondrial electron transport. Likely, the formation of ROS could contribute to this effect. As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells. Treatment of A549, HEK293, HepG2, and COS cells with DMNQ resulted in a concentration-dependent raise in ROS which correlated with HIF-1alpha accumulation. By using a HIF-1alpha-von Hippel-Lindau tumor suppressor protein binding assay, we show that ROS produced by DMNQ impaired prolyl hydroxylase activity. When HIF-1alpha is stabilized by NO, low concentrations of DMNQ (<1 microM) revealed no effect, intermediate concentrations of 1 to 40 microM DMNQ attenuated HIF-1alpha accumulation and higher concentrations of DMNQ promoted HIF-1alpha stability. Attenuation of NO-induced HIF-1alpha stability regulation by ROS was mediated by an active proteasomal degradation pathway. In conclusion, we propose that scavenging of NO by ROS and vice versa attenuate HIF-1alpha accumulation in a concentration-dependent manner. This is important to fully elucidate HIF-1alpha regulation under inflammatory conditions.  相似文献   

10.
Hypoxia inducible factor 1 (HIF-1) senses and coordinates cellular responses towards hypoxia. HIF-1 activity is primarily determined by stability regulation of its alpha subunit that is degraded by the 26S proteasome under normoxia due to hydroxylation by prolyl hydroxylases (PHDs) but is stabilized under hypoxia. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha and promotes hypoxia-responsive target gene expression under normoxia. However, in hypoxia, NO attenuates HIF-1alpha stabilization and gene activation. It was our intention to explain the contrasting behavior of NO under hypoxia. We used the iron chelator desferrioxamine (DFX) or hypoxia to accumulate HIF-1alpha in HEK293 cells. Once the protein accumulated, we supplied NO donors and followed HIF-1alpha disappearance. NO-evoked HIF-1alpha destabilization was reversed by proteasomal inhibition or by blocking PHD activity. By using the von Hippel Lindau (pVHL)-HIF-1alpha capture assay, we went on to demonstrate binding of pVHL to HIF-1alpha under DFX/NO but not DFX alone. Showing increased intracellular free iron under conditions of hypoxia/NO compared to hypoxia alone, we assume that increased free iron contributes to regain PHD activity. Variables that allow efficient PHD activation such as oxygen availability, iron content, or cofactor accessibility at that end allow NO to modulate HIF-1alpha accumulation.  相似文献   

11.
12.
13.
14.
The activity of hypoxia-inducible factor 1 (HIF-1) is primarily determined by stability regulation of its alpha subunit, which is stabilized under hypoxia but degraded during normoxia. Hydroxylation of HIF-1alpha by prolyl hydroxylases (PHDs) recruits the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex to initiate proteolytic destruction of the alpha subunit. Hypoxic stabilization of HIF-1alpha has been reported to be antagonized by nitric oxide (NO). By using a HIF-1alpha-pVHL binding assay, we show that NO released from DETA-NO restored prolyl hydroxylase activity under hypoxia. Destabilization of HIF-1alpha by DETA-NO was reversed by free radical scavengers such as NAC and Tiron, thus pointing to the involvement of reactive oxygen species (ROS). Therefore, we examined the effects of ROS on HIF-1alpha stabilization. Treatment of cells under hypoxia with low concentrations of the superoxide generator 2,3-dimethoxy-1,4-naphthoquinone lowered HIF-1alpha protein stabilization. In vitro HIF-1alpha-pVHL interaction assays demonstrated that low-level ROS formation increased prolyl hydroxylase activity, an effect antagonized by ROS scavengers. While determining intracellular ROS formation we noticed that reduced ROS production under hypoxia was restored by the addition of DETA-NO. We propose that an increase in ROS formation contributes to HIF-1alpha destabilization by NO donors under hypoxia via modulation of PHD activity.  相似文献   

15.
16.
17.
18.
The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.  相似文献   

19.
HIF hydroxylation and cellular oxygen sensing   总被引:7,自引:0,他引:7  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号