首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell proliferative response in microgravity culture is a result of alterations in signaling events within the first few hours of activation, which are required for the expression of important regulatory molecules.  相似文献   

4.
5.
6.
The state of T cell activation and proliferation controls HIV-1 replication and gene expression. Previously, we demonstrated that the administration of PHA and PMA to the human T cell line Jurkat activates the HIV-1 enhancer, which is composed of two nuclear factor kappa B (NF kappa B) binding sites. Here, we show that PMA alone is sufficient for this effect. In addition, activation of T cells through the surface proteins TCR/CD3 and CD28 increased gene expression directed by the HIV-1 long terminal repeat (LTR) to the same extent as PMA. Analysis of 5' deletions in the LTR revealed that the NF kappa B binding sites and sequences in the upstream U3 region are required for this response. Whereas cyclosporin A did not inhibit the effect of PMA, it reduced the effects of agonists to TCR/CD3 and CD28 on the LTR. H7, an inhibitor of protein kinase C (PKC), blocked the effects of all stimuli. Thus, PMA activates the NF kappa B sites through a PKC-dependent pathway while ligands to TCR/CD3 and CD28 activate the LTR through a cyclosporin A-sensitive, PKC-dependent pathway of T cell activation. We conclude that mechanisms involved in the expression of IL-2 and the alpha-chain of the IL-2R alpha genes also play a role in the regulation of HIV-1. Physiologic stimuli can activate HIV-1 gene expression; agents that block T cell activation also inhibit activation of the LTR. These observations might serve as a model for the regulation of HIV-1 gene expression in peripheral blood T cells.  相似文献   

7.
The regulation of IL-2 gene expression during T cell activation and proliferation has been investigated in primary cultures of purified human peripheral blood T cells. Prior results indicated that stimulation of T cells by anti-CD28 mAb plus PMA could induce IL-2 expression and T cell proliferation that was entirely resistant to cyclosporine. The present studies examined whether CD28 augments IL-2 expression by a unique pathway or merely acts at a point common to CD3-induced proliferation but distal to the effects of cyclosporine. The induction of maximal IL-2 gene expression required three signals provided by phorbol ester, calcium ionophore, and anti-CD28 mAb. Stimulation of cells by optimal amounts of calcium ionophore and PMA induced IL-2 mRNA that was completely suppressed by cyclosporine. The addition of anti-CD28 to T cells stimulated with PMA plus calcium ionophore induced a 5- to 100-fold increase in IL-2 gene expression and secretion that was resistant to cyclosporine. The CD28 signal was able to increase steady state IL-2 mRNA levels even in cells treated with maximally tolerated amounts of calcium ionophore and PMA. The three-signal requirement did not reflect differential regulation of lymphokine gene expression between the CD4 and CD8 T cell subsets or differences in the kinetics of IL-2 mRNA expression. The signal provided by CD28 is distinct from that of CD3 because although anti-CD28 plus PMA-induced proliferation is resistant to cyclosporine, anti-CD3 or anti-CD3 plus PMA-induced IL-2 expression is sensitive. Thus, these studies show that three biochemically distinct signals are required for maximal IL-2 gene expression. Furthermore, these studies suggest that lymphokine production in T cells is not controlled by an "on/off" switch, but rather, that CD28 regulates a distinct intracellular pathway which modulates the level of IL-2 production on a per cell basis. The observation that CD28 stimulation results in IL-2 concentrations that exceed 1000 U/m1 in tissue culture supernatants suggests that a role in vivo for CD28 might be to amplify immune responses initiated by the CD3/T cell receptor complex. Finally, the observation that CD28 interacts with the signals provided by PMA and calcium ionophore shows that the function of CD28 is not merely to act as a scaffold to stabilize or enhance signalling through the CD3/TCR complex.  相似文献   

8.
9.
Nam KO  Shin SM  Lee HW 《Cytokine》2006,33(2):87-94
4-1BB, one of co-stimulatory molecules, is a member of TNF receptor superfamily and expressed on T cells upon TCR ligation. We have shown that 4-1BB is a co-stimulatory molecule enhancing cell cycle progression and inhibiting activation-induced cell death of CD8+ T cells by enhancing TCR signaling pathways. Here, we first report that the cross-linking of 4-1BB increased the expression of IL-13 mRNA and protein, and its secretion apparently via calcineurin, a Ca2+/calmodulin-dependent phosphatase. Ligation of 4-1BB with p815-m-4-1BBL evoked intracellular Ca2+ level in CD8+ T cells. CD8+ T cells express IL-13 receptor alpha1 mRNA. Incubation with anti-IL-13 blocking mAb reduced proliferation of CD8+ T cells enhanced by 4-1BB, and the treatment of CD3/4-1BB-ligated CD8+ T cells with recombinant IL-13 enhances cell proliferation, indicating that 4-1BB-induced IL-13 expression is partially responsible for the CD8+ T cell expansion in an autocrine or paracrine manner.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

19.
Telomerase activity is involved in telomere length maintenance. Leukocytes, unlike many human somatic tissues, have detectable telomerase activity. These cells provide a normal human cell type in which to study telomerase. We studied the regulation of telomerase activity and the telomerase RNA component as leukocytes were stimulated to enter the cell cycle. In primary human leukocytes stimulated with phytohemagglutinin, telomerase activity increased > 10-fold as naturally quiescent cells entered the cell cycle. Antibodies to the T cell receptor (TCR)/CD3 complex and the costimulatory CD28 receptor induced telomerase activity in a T cell-enriched population of cells. Rapamycin, an immunosuppressant that blocks TCR/CD3 signal transduction pathways and cdk2 activation, blocked telomerase induction. Hydroxyurea, an inhibitor of S phase, did not block cdk2 kinase activity or telomerase activation. In summary, telomerase is regulated in G1 phase as normal human T cells enter the cell cycle.  相似文献   

20.
The response of splenic CD4 T cells from ovalbumin (OVA)-specific T cell receptor (TCR) transgenic mice after long-term feeding of a diet containing this antigen was examined. These CD4 T cells exhibited a decreased response to OVA peptide stimulation, in terms of proliferation, interleukin-2 secretion, and CD40 ligand expression, compared to those from mice fed a control diet lacking OVA, demonstrating that oral tolerance of T cells had been induced through oral intake of the antigen. We investigated the intracellular signaling pathways, which were Ca/CN cascade and Ras/MAPK cascade, of these tolerant CD4 T cells using phorbol-12-myristate-13-acetate (PMA) and ionomycin, which are known to directly stimulate these pathways. In contrast to the decreased response to TCR stimulation by OVA peptide, it was shown that the response of splenic CD4 T cells to these reagents in the state of oral tolerance was stronger. These results suggest that splenic CD4 T cells in the state of oral tolerance have an impairment in signaling, in which signals are not transmitted from the TCR to downstream signaling pathways, and have impairments in the vicinity of TCR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号