首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chlamydia pneumoniae is the causative agent of respiratory tract infections and a number of chronic diseases. Here we investigated the involvement of the common TLR adaptor molecule MyD88 in host responses to C. pneumoniae-induced pneumonia in mice. MyD88-deficient mice were severely impaired in their ability to mount an acute early inflammatory response toward C. pneumoniae. Although the bacterial burden in the lungs was comparable 5 days after infection, MyD88-deficient mice exhibited only minor signs of pneumonia and reduced expression of inflammatory mediators. MyD88-deficient mice were unable to up-regulate proinflammatory cytokines and chemokines, demonstrated delayed recruitment of CD8+ and CD4+ T cells to the lungs, and were unable to clear the pathogen from their lungs at day 14. At day 14 the MyD88-deficent mice developed a severe, chronic lung inflammation with elevated IL-1beta and IFN-gamma leading to increased mortality, whereas wild-type mice as well as TLR2- or TLR4-deficient mice recovered from acute pneumonia and did not show delayed bacterial clearance. Thus, MyD88 is essential to recognize C. pneumoniae infection and initiate a prompt and effective immune host response against this organism leading to clearance of bacteria from infected lungs.  相似文献   

2.
To assess the contribution of TLR signaling in the host response to Borrelia burgdorferi, mice deficient in the common TLR adaptor protein, myeloid differentiation factor 88 (MyD88), were infected with B. burgdorferi. MyD88-deficient mice harbored extremely high levels of B. burgdorferi in tissues when compared with wild-type littermates and greater amounts of spirochetes in tissues than TLR2-deficient mice. These findings suggest that, in addition to TLR2, other MyD88-dependent pathways play a significant role in the host defense to B. burgdorferi. MyD88(-/-) mice maintained the ability to produce Abs directed against B. burgdorferi. Partial clearance of spirochetes was evident in long term infection studies and immune sera from MyD88-deficient mice were able to protect naive mice from infection with B. burgdorferi. Thus, the acquired immune response appeared to be functional in MyD88(-/-) mice, and the inability to control spirochete numbers was due to a failure of cells involved in innate defenses. Although macrophages from MyD88(-/-) mice responded poorly to Borrelia sonicate in vitro, MyD88(-/-) mice still developed an inflammatory arthritis after infection with B. burgdorferi characterized by an influx of neutrophils and mononuclear cells. The findings presented here point to a dichotomy between the recruitment of inflammatory cells to tissue and an inability of these cells to kill localized spirochetes.  相似文献   

3.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   

4.
Antiviral immunity requires early and late mechanisms in which IFN-alpha and IL-12 play major roles. However, the initial events leading to their production remain largely unclear. Given the crucial role of TLR in innate recognition, we investigated their role in antiviral immunity in vivo. Upon murine CMV (MCMV) infection, both MyD88-/- and TLR9-/- mice were more susceptible and presented increased viral loads compared with C57BL/6, TLR2-/-, TLR3-/-, or TLR4-/- mice. However, in terms of resistance to infection, IFN-alpha production and in many other parameters of early inflammatory responses, the MyD88-/- mice showed a more defective response than TLR9-/- mice. In the absence of the TLR9/MyD88 signaling pathway, cytokine production was dramatically impaired with a complete abolition of bioactive IL-12p70 serum release contrasting with a high flexibility for IFN-alpha release, which is initially (36 h) plasmacytoid dendritic cell- and MyD88-dependent, and subsequently (44 h) PDC-, MyD88-independent and, most likely, TLR-independent. NK cells from MCMV-infected MyD88-/- and TLR9-/- mice displayed a severely impaired IFN-gamma production, yet retained enhanced cytotoxic activity. In addition, dendritic cell activation and critical inflammatory cell trafficking toward the liver were still effective. In the long term, except for isotype switching to MCMV-specific IgG1, the establishment of Ab responses was not significantly altered. Thus, our results demonstrate a critical requirement of TLR9 in the process of MCMV sensing to assure rapid antiviral responses, coordinated with other TLR-dependent and -independent events that are sufficient to establish adaptive immunity.  相似文献   

5.
Toll-like receptors (TLRs) are important for the activation of innate immune cells upon encounter of microbial pathogens. The present study investigated the potential roles of TLR2, TLR4, and the signaling protein myeloid differentiation factor 88 (MyD88) in polymicrobial septic peritonitis. Whereas both TLR2 and TLR4 were dispensable for host defense against septic peritonitis, MyD88-deficient mice were protected in this infection model. Recruitment of neutrophils to the septic focus and bacterial clearance were normal in MyD88-deficient mice. In contrast, the systemic inflammatory response was strongly attenuated in the absence of MyD88. Surprisingly, MyD88 deficiency did not alter cytokine and chemokine production in spleen, but markedly reduced the inflammatory response in liver and lung. Production of monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1alpha was entirely independent of MyD88. These results imply a central role of MyD88 for the systemic immune pathology of polymicrobial sepsis and show that cytokine production in spleen and induction of certain chemokines are MyD88 independent.  相似文献   

6.
We have studied the role of myeloid differentiation factor 88 (MyD88), the universal Toll-like receptor (TLR) adaptor protein, in murine defenses against Candida albicans. MyD88-deficient mice, experimentally infected in vivo, had a very significant impaired survival, and a higher tissue fungal burden when compared with control mice. The recruitment of neutrophils to the site of infection was also significantly diminished in MyD88-\- mice. In vitro production of proinflammatory cytokines such as TNF-alpha, IFN-gamma and IL-12p70, by antigen-stimulated splenocytes from mice intravenously infected with the low-virulence C. albicans PCA2 strain, could not be detected in MyD88-\- mice. This default of production of Th1 cytokines in MyD88-deficient mice correlated with a greatly diminished frequency of IFN-gamma-producing CD4 + T lymphocytes. Also, the frequency of IFN-gamma-producing CD8 + T lymphocytes was lower in MyD88-\- mice than in control mice. Although C. albicans-specific antibody titers in PCA2-infected mice appeared more quickly in MyD88-\- mice than in control mice, the MyD88-\- group was not able to maintain the Candida-specific IgM nor IgG titers at the third week of infection. The complexity of antigens recognized by sera from MyD88-\- mice was quite similar to that from infected control mice. Taken together, these data show that MyD88-\- mice are extremely susceptible to C. albicans infections, suggesting that MyD88-dependent signaling pathways are essential for both the innate and adaptive immune responses to C. albicans.  相似文献   

7.
MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila , TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila , the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-γ) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila . Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.  相似文献   

8.
Toll-like receptors (TLRs) are involved in pathogen recognition by the innate immune system. Different TLRs and the adaptor molecule myeloid differentiation factor 88 (MyD88) were previously shown to mediate in vitro cell activation induced by group B streptococcus (GBS). The present study examined the potential in vivo roles of TLR2 and MyD88 during infection with GBS. When pups were infected locally with a low bacterial dose, none of the TLR2- or MyD88-deficient mice, but all of the wild-type ones, were able to prevent systemic spread of GBS from the initial focus. Bacterial burden was higher in MyD88- than in TLR2-deficient mice, indicating a more profound defect of host defense in the former animals. In contrast, a high bacterial dose induced high level bacteremia in both mutant and wild-type mice. Under these conditions, however, TLR2 or MyD88 deficiency significantly protected mice from lethality, concomitantly with decreased circulating levels of TNF-alpha and IL-6. Administration of anti-TNF-alpha Abs to wild-type mice could mimic the effects of TLR2 or MyD88 deficiency and was detrimental in the low dose model, but protective in the high dose model. In conclusion, these data highlight a dual role of TLR2 and MyD88 in the host defense against GBS sepsis and strongly suggest TNF-alpha as the molecular mediator of bacterial clearance and septic shock.  相似文献   

9.
In addition to their role in triggering innate immune responses, Toll-like receptors are proposed to play a key role in linking the innate and adaptive arms of the immune response. The majority of cellular responses downstream of Toll-like receptors are mediated through the adapter molecule myeloid differentiation factor 88 (MyD88), and mice with a targeted deletion of MyD88 are highly susceptible to bacterial infections, including primary infection with Listeria monocytogenes (LM). In contrast, herein we demonstrate that MyD88-deficient mice have only a modest impairment in their LM-specific CD4 T cell response, and no impairment in their CD8 T cell response following infection with ActA-deficient LM. Furthermore, CD8 T cells from immunized MyD88-deficient mice protected naive recipient mice following adoptive splenocyte transfer, and immunized MyD88-deficient mice were protected from infection with wild-type LM. These results indicate that adaptive immune responses can be generated and provide protective immunity in the absence of MyD88.  相似文献   

10.
The Toll-like receptors (TLRs) and the myeloid differentiation factor 88 (MyD88) are key players in the activation of the innate immune defence during microbial infections. Using different murine infection models, we show that MyD88-dependent signalling is crucial for the activation of the innate immune defence against Streptococcus pneumoniae. Our data demonstrate that both local and systemic inflammatory response to S. pneumoniae depends on the presence of MyD88 to clear bacterial colonization of the upper respiratory tract and to prevent pulmonary and systemic infection in mice. Finally, we described a strong correlation between enhanced bacterial growth in the bloodstream of MyD88-deficient mice and the inability to lower the serum iron concentration in response to infection.  相似文献   

11.
This study investigated the influence of TLR (toll-like receptor)4, TLR2, and MyD88 in Toxoplasma gondii-infected wild-type (WT) mice and TLR4-, TLR2-, and MyD88-deficient mice. Ninety-five percent of MyD88-deficient mice died 10-16 days after intraperitoneal infection with 100 cysts of T. gondii Fukaya strain, whereas 95-100% of TLR4- and TLR2-deficient mice and WT C57BL/6 (B6) mice survived for more than 7 wk after T. gondii infection. The distribution of T. gondii in various organs of TLR4-, TLR2-, and MyD88-deficient mice and WT B6 mice was assessed 2 wk after T. gondii intraperitoneal infection using quantitative competitive polymerase chain reaction. In MyD88-deficient mice, high levels of T. gondii load were observed in the brain, tongue, heart, lungs, spleen, liver, mesenteric lymph node, and kidneys after infection. The T. gondii load was significantly increased in the lungs in both TLR4- and TLR2-deficient mice compared with WT B6 mice. High levels of anti-mouse heat shock protein (mHSP)70 autoantibody and anti-T. gondii HSP70 antibody production were detected in the sera from MyD88-deficient mice.  相似文献   

12.
Vaccination of nonautoimmune prone mice with syngeneic dendritic cells (DC) readily induces anti-DNA autoantibodies but does not trigger systemic disease. We observed that anti-DNA autoantibody generation absolutely required alphabeta T cells and that gammadelta T cells also contributed to the response, but that regulatory T cells restrained autoantibody production. Although both NZB/W F(1) mice and DC vaccinated C57/BL6 mice produced autoantibodies against dsDNA, vaccinated mice had higher levels of Abs against H1 histone and lower levels of antinucleosome Abs than NZB/W F(1) mice. Despite a 100-fold increase in IL-12 and Th1 skewing to a foreign Ag, OVA, synergistic TLR activation of DC in vitro failed to augment anti-DNA Abs or promote class switching beyond that induced by LPS alone. TLR stimulation was not absolutely required for the initial loss of B cell tolerance because anti-DNA levels were similar when wild-type (WT) or MyD88-deficient DC were used for vaccination or WT and MyD88-deficient recipients were vaccinated with WT DC. In contrast, systemic administration of LPS, augmented anti-DNA Ab levels and promoted class switching, and this response was dependent on donor DC signaling via MyD88. LPS also augmented responses in the MyD88-deficient recipients, suggesting that LPS likely exerts its effects on both transferred DC and host B cells in vivo. These results indicate that both the alphabeta and gammadelta subsets are necessary for promoting autoantibody production by DC vaccination, and that although TLR/MyD88 signaling is not absolutely required for initiation, this pathway does promote augmentation, and Th1-mediated skewing, of anti-DNA autoantibodies.  相似文献   

13.
The means by which Francisella tularensis, the causative agent of tularemia, are recognized by mammalian immune systems are poorly understood. Here we wished to explore the contribution of the MyD88/Toll-like receptor signaling pathway in initiating murine responses to F. tularensis Live Vaccine Strain (LVS). MyD88 knockout (KO) mice, but not TLR2-, TLR4- or TLR9-deficient mice, rapidly succumbed following in vivo bacterial infection via the intradermal route even with a very low dose of LVS (5 x 10(1)) that was 100,000-fold less than the LD(50) of normal wild-type (WT) mice. By day 5 after LVS infection, bacterial organ burdens were 5-6 logs higher in MyD88 knockout mice; further, unlike infected WT mice, levels of interferon-gamma in the sera of LVS-infected MyD88 KO were undetectable. An in vitro culture system was used to assess the ability of bone marrow macrophages derived from either KO or WT mice to support bacterial growth, or to control intracellular bacterial replication when co-cultured with immune lymphocytes. In this assay, bacterial replication was similar in macrophages derived from either WT or any of the TLR KO mice. Bacterial growth was controlled in co-cultures containing macrophages from MyD88 KO mice or TLR KO mice as well as in co-cultures containing immune WT splenic lymphocytes and WT macrophages. Further, MyD88-deficient LVS-immune splenocytes controlled intracellular growth comparably to those from normal mice. Thus MyD88 is essential for innate host resistance to LVS infection, but is not required for macrophage control of intracellular bacterial growth.  相似文献   

14.
Studies performed in vitro suggest that activation of Toll-like receptors (TLRs) by parasite-derived molecules may initiate inflammatory responses and host innate defense mechanisms against Trypanosoma cruzi. Here, we evaluated the impact of TLR2 and myeloid differentiation factor 88 (MyD88) deficiencies in host resistance to infection with T. cruzi. Our results show that macrophages derived from TLR2 (-/-) and MyD88(-/-) mice are less responsive to GPI-mucin derived from T. cruzi trypomastigotes and parasites. In contrast, the same cells from TLR2(-/-) still produce TNF-alpha, IL-12, and reactive nitrogen intermediates (RNI) upon exposure to live T. cruzi trypomastigotes. Consistently, we show that TLR2(-/-) mice mount a robust proinflammatory cytokine response as well as RNI production during the acute phase of infection with T. cruzi parasites. Further, deletion of the functional TLR2 gene had no major impact on parasitemia nor on mortality. In contrast, the MyD88(-/-) mice had a diminished cytokine response and RNI production upon acute infection with T. cruzi. More importantly, we show that MyD88(-/-) mice are more susceptible to infection with T. cruzi as indicated by the higher parasitemia and accelerated mortality, as compared with the wild-type mice. Together, our results indicate that T. cruzi parasites elicit an alternative inflammatory pathway independent of TLR2. This pathway is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.  相似文献   

15.
The innate immune system recognizes influenza A virus via TLR 7 or retinoic acid-inducible gene I in a cell-type specific manner in vitro, however, physiological function(s) of the MyD88- or interferon-beta promoter stimulator 1 (IPS-1)-dependent signaling pathways in antiviral responses in vivo remain unclear. In this study, we show that although either MyD88- or IPS-1-signaling pathway was sufficient to control initial antiviral responses to intranasal influenza A virus infection, mice lacking both pathways failed to show antiviral responses, resulting in increased viral load in the lung. By contrast, induction of B cells or CD4 T cells specific to the dominant hemagglutinin or nuclear protein Ags respectively, was strictly dependent on MyD88 signaling, but not IPS-1 signaling, whereas induction of nuclear protein Ag-specific CD8 T cells was not impaired in the absence of either MyD88 or IPS-1. Moreover, vaccination of TLR7- and MyD88-deficient mice with inactivated virus failed to confer protection against a lethal live virus challenge. These results strongly suggest that either the MyD88 or IPS-1 signaling pathway is sufficient for initial antiviral responses, whereas the protective adaptive immune responses to influenza A virus are governed by the TLR7-MyD88 pathway.  相似文献   

16.
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus.  相似文献   

17.
TLR adaptor MyD88 activation is important in host resistance to Toxoplasma gondii during i.p. infection, but the function of this signaling pathway during oral infection, in which mucosal immunity assumes a predominant role, has not been examined. In this study, we show that MyD88(-/-) mice fail to control the parasite and succumb within 2 wk of oral infection. Early during infection, T cell IFN-gamma production, recruitment of neutrophils and induction of p47 GTPase IGTP (Irgm3) in the intestinal mucosa were dependent upon functional MyD88. Unexpectedly, these responses were MyD88-independent later during acute infection. In particular, CD4(+) T cell IFN-gamma reached normal levels independently of MyD88, despite continued absence of IL-12 in these animals. The i.p. vaccination of MyD88(-/-) mice with an avirulent T. gondii uracil auxotroph elicited robust IFN-gamma responses and protective immunity to challenge with a high virulence T. gondii strain. Our results demonstrate that MyD88 is required to control Toxoplasma infection, but that the parasite can trigger adaptive immunity without the need for this TLR adaptor molecule.  相似文献   

18.
Recent studies have revealed that innate immunity is involved in the development of adaptive immune responses; however, its role in protection is not clear. In order to elucidate the exact role of Toll-like receptor (TLR) or RIG-I-like receptor (RLR) signaling on immunogenicity and protective efficacy against influenza A virus infection (A/PR/8/34 [PR8]; H1N1), we adapted several innate signal-deficient mice (e.g., TRIF(-/-), MyD88(-/-), MyD88(-/-) TRIF(-/-), TLR3(-/-) TLR7(-/-), and IPS-1(-/-)). In this study, we found that MyD88 signaling was required for recruitment of CD11b(+) granulocytes, production of early inflammatory cytokines, optimal proliferation of CD4 T cells, and production of Th1 cytokines by T cells. However, PR8 virus-specific IgG and IgA antibody levels in both systemic and mucosal compartments were normal in TLR- and RLR-deficient mice. To further assess the susceptibility of these mice to influenza virus infection, protective efficacy was determined after primary or secondary lethal challenge. We found that MyD88(-/-) and MyD88(-/-) TRIF(-/-) mice were more susceptible to primary influenza virus infection than the B6 mice but were fully protected against homologous (H1N1) and heterosubtypic (H5N2) secondary infection when primed with a nonlethal dose of PR8 virus. Taken together, these results show that MyD88 signaling plays an important role for resisting primary influenza virus infection but is dispensable for protection against a secondary lethal challenge.  相似文献   

19.
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.  相似文献   

20.
Activation of innate immune cells by Trypanosoma cruzi-derived molecules such as GPI anchors and DNA induces proinflammatory cytokine production and host defense mechanisms. In this study, we demonstrate that DNA from T. cruzi stimulates cytokine production by APCs in a TLR9-dependent manner and synergizes with parasite-derived GPI anchor, a TLR2 agonist, in the induction of cytokines by macrophages. Compared with wild-type animals, T. cruzi-infected Tlr9(-/-) mice displayed elevated parasitemia and decreased survival. Strikingly, infected Tlr2(-/-)Tlr9(-/-) mice developed a parasitemia equivalent to animals lacking MyD88, an essential signaling molecule for most TLR, but did not show the acute mortality displayed by MyD88(-/-) animals. The enhanced susceptibility of Tlr9(-/-) and Tlr2(-/-)Tlr9(-/-) mice was associated with decreased in vivo IL-12/IFN-gamma responses. Our results reveal that TLR2 and TLR9 cooperate in the control of parasite replication and that TLR9 has a primary role in the MyD88-dependent induction of IL-12/IFN-gamma synthesis during infection with T. cruzi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号