首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Retained larval eyes (stemmata) were studied in the imagines of three species of Trichoptera: Phrygania grandis, Agrypnia varia, and Trichostegia minor. At the light-microscopic level the stemmata of all three species appeared to represent different stages of reduction with respect to size, shape and number of lenses. However, in all three species electron-microscopic studies showed units with monolayered rhabdoms, each formed by four retinula cells. By use of immunocytochemistry the presence of S-antigen was demonstrated in the retinula cells and their axons. This method also revealed the central projections of the axons of the retinula cells, which were found (i) to terminate either in the lamina accessoria or (ii) to penetrate this area to join the fibers of the outer chiasma of the optic lobes and then terminate in the medulla accessoria. The lamina accessoria and the medulla accessoria are the assumed remnants of the larval optic lobes. It is suggested that the imaginal stemmata might still be functioning photoreceptors.  相似文献   

2.
Summary Specific antisera against protein-conjugated -aminobutyric acid (GABA) were used in immunocytochemical staining procedures to study the distribution of the putative GABA-like immunoreactive neurons in the optic lobes of Periplaneta. GABA-like immunoreactive structures are evident in all three optic neuropil regions. Six different populations of GABAergic neurons, whose perikarya are grouped around the medulla, are found within the optic lobe. The number of these immunoreactive cells varies greatly and corresponds to the number of ommatidia of the eye. In the proximal part of the lamina, a coarse network of GABA-positive fibres is recognizable. These are the processes of large field tangential cells whose fibres pass through the distal surface of the medulla. A second fibre population of the lamina is made up of the processes of the centrifugal columnar neurons whose perikarya lie proximally to the medulla. The medulla contains 9 layers with GABAergic elements of variable immunoreactivity. Layers 1, 3, 5, 7 and 9 exhibit strong labelling, as a result of partial overlapping of the processes of centrifugal and centripetal columnar neurons, tangential fibres and/or lateral processes of perpendicular fibres and (possibly) processes of amacrines. A strong immunoreactivity is found in the proximal and distal layers of the lobula.  相似文献   

3.
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia‐like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband‐row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last‐stage stomatopod larvae possess double‐retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last‐stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3–14, 2018  相似文献   

4.
Summary The development of the compound eyes and nervous system of the penaeid shrimp,Penaeus duorarum, from the first nauplius to the first postlarva, has been studied. The first anlage of the compound eyes is a pair of optic discs on the front of the animal. These increase in size through cell-division until the second protozoea stage, where the eye-stalks appear with ommatidia and optic neuropiles developed. The original neuroectoderm of the optic discs is retained in the shape of a proliferation zone throughout the life of the animal. From the optic discs, develop the ommatidia, the lamina ganglionaris, and the medulla externa. The medullae interna and terminalis develop from cells coming from the brain anlage. From the second protozoea and onwards, the development is less rapid. The final shape of the adult eye is reached during the postlarval stages and includes the appearance of a few more pigments and a perfecting of several features. A scheme for the development of crustacean compound eyes is laid down. Further, the medulla externa of the Malacostraca and the single medulla of non-malacostracan crustaceans are homologized.The continuous growth of the nervous system is traced in the development of the neuropile. The appearance of glomeruli structures is reported, as are also, to some extent, neurosecretory organs. The development of the SPX-organ conforms to that of other decapods.For the sake of simplicity, the findings reported below in Results are grouped under two headings, namely the eye-stalk and the nervous system. Under the eye-stalk will be described both the structures coming from the optic discs comprising the ommatidia, the lamina ganglionaris, and the medulla externa, and the contributions from the nervous system comprising the medulla terminalis and medulla interna. Under the nervous system will be described the rest of the nervous system. The term anlage of the compound eyes is the same as the optic discs and denotes all contributions from this area in the early larva.  相似文献   

5.
T. Kaiser  G. Alberti 《Protoplasma》1991,163(1):19-33
Summary Neocarus texanus, a primitive mite, bears two pairs of eyes, which are principally similar in ultrastructure. Each eye is covered externally by a cuticular cornea. It is underlain by flat sheath cells which send extensive processes into the retina. The retina is composed of distal and proximal cells. The 20 distal cells of the anterior eye are inversely orientated and form 10 disc-like rhabdoms. They represent typical retinula cells. Each rhabdom encloses the dendritic process of a neuron, the perikaryon of which is located outside the retina (proximal cells). The significance of this cell is not known. The retina is underlain by a crystalline tapetum. In the posterior eye 14 retinula cells form 7 rhabdoms in an arrangement similar to the anterior eye. The eyes of one side of the body are located within a capsule of pigment cells. Together the axons of the distal and proximal cells form the two optic nerves, one on each side of the body. The optic nerves leave the eyes anteriorly and terminate in two optic neuropils located in the brain.From structural evidence it is concluded, that the resolution of the eyes must be rather low.The peculiar proximal cells have not been observed previously in Acari. They probably resemble at best the eccentric cells and arhabdomeric cells of xiphosurans, scorpions, whip-scorpions and opilionids. Also, inverse retinae and tapeta of the present type have not been found in Acari until now, but are present in other Arachnida. Thus the eyes ofNeocarus texanus evidently represent a unique type within the Acari.  相似文献   

6.
7.
Summary The photoreceptors ofPogaina suecica correspond to the type of pigment cup ocelli. Each eye consists of one cup cell and three sensory cells. The most conspicuous differentiations of these eyes are lens elements formed by giant mitochondria densely filled with homogeneous electron-dense material. From electron microscopical findings available to date it is hypothesized that mitochondrial lensing might be an autapomorphy of a taxon comprising the Provorticidae Kirgisellinae, Dalyelliidae and Graffillidae groups which are ascribed to the paraphyletic Dalyellioida.Abbreviations l 1–3 lenses - npc nucleus of the pigment cell - pc pigment cell - pg pigment granule - rh rhabdomeres - sc 1–3 sensory cells  相似文献   

8.
The present study is a biochemical characterization of the photophore lenses of the midshipman fish, Porichthys notatus, a species that bears 800 photophores distributed over the body surface. The biochemical properties of the photophore lenses were compared with those of the eye lens with which they share a similar developmental origin and analogous function. To achieve a high refractive index, the vertebrate eye lens has a relatively high concentration of structural proteins (20–50%, depending on species) and a simple protein composition, that is, relatively few proteins are synthesized in comparison to other tissues. Similarly, the photophore lenses of P. notatus had a relatively high protein concentration (average = 29%, n = 5) and approximately 60% of the total soluble protein was represented by two subunit species of 33 kD and 35 kD on denaturing polyacrylamide gels. The structural proteins of the eye lens are of two principle types: 1) and polypeptides which belong to vertebrate lens-specific crystallin families, and, 2) enzymes recruited into the lens which take on the function of structural proteins. Here, we report that the two major photophore lens subunits of 33 kD and 35 kD are biochemically similar to each other, but are clearly distinct from any of the previously characterized crystallins. Therefore, we propose that photophore lenses appear to recruit a novel protein.  相似文献   

9.
The lens plays an important role in the development of the optic cup[1,2]. Using the zebrafish as a model organism, questions regarding lens development can be addressed. The zebrafish is useful for genetic studies due to several advantageous characteristics, including small size, high fecundity, short lifecycle, and ease of care. Lens development occurs rapidly in zebrafish. By 72 hpf, the zebrafish lens is functionally mature [3]. Abundant genetic and molecular resources are available to support research in zebrafish. In addition, the similarity of the zebrafish eye to those of other vertebrates provides basis for its use as an excellent animal model of human defects[4-7]. Several zebrafish mutants exhibit lens abnormalities, including high levels of cell death, which in some cases leads to a complete degeneration of lens tissues [8]. To determine whether lens abnormalities are due to intrinsic causes or to defective interactions with the surrounding tissues, transplantation of a mutant lens into a wild-type eye is performed. Using fire-polished metal needles, mutant or wild-type lenses are carefully dissected from the donor animal, and transferred into the host. To distinguish wild-type and mutant tissues, a transgenic line is used as the donor. This line expresses membrane-bound GFP in all tissues, including the lens. This transplantation technique is an essential tool in the studies of zebrafish lens mutants.Open in a separate windowClick here to view.(64M, flv)  相似文献   

10.
Until now, the structure and optics of the calcite lenses in abathochroal trilobite eyes have not been investigated. So, the relationship of the abathochroal eye to other types of trilobite eyes has remained unclear. We have reconstructed the exact shape and optics of the lenses in the eodiscid trilobite Neocobboldia chinlinica to determine the mechanism of its abathochroal eye. The distal lens surface has a convex profile, while on the proximal lens surface there is a small central bulge, resulting in an undulating profile. Due to this bulge, the curvature and refractive power of the central region of the lens are greater than those of the peripheral zone. Consequently, the lens is bifocal. However, Neocobboldia could not take advantage of this bifocal property of its tiny lenses because of the diffraction of light and the infinite depth of field in object space. For the same reason, it is also sure that the undulating lower surface of the abathochroal lens did not evolve as a Huygensian profile, correcting for spherical aberration, as suggested earlier. This undulation is a result of the presence of the central bulge, the evolutionary significance of which remains enigmatic. On the basis of our results, we have outlined an evolutionary scenario for development of the optics of the lenses in trilobite eyes.  相似文献   

11.
Summary In a comparative study, the anatomy of neurons immunoreactive with an antiserum against the crustacean -pigment-dispersing hormone was investigated in the brain of several orthopteroid insects including locusts, crickets, a cockroach, and a phasmid. In all species studied, three groups of neurons with somata in the optic lobes show pigment-dispersing hormone-like immunoreactivity. Additionally, in most species, the tritocerebrum exhibits weak immunoreactive staining originating from ascending fibers, tritocerebral cells, or neurons in the inferior protocerebrum. Two of the three cell groups in the optic lobe have somata at the dorsal and ventral posterior edge of the lamina. These neurons have dense ramifications in the lamina with processes extending into the first optic chiasma and into distal layers of the medulla. Pigment-dispersing hormone-immunoreactive neurons of the third group have somata near the anterior proximal margin of the medulla. These neurons were reconstructed in Schistocerca gregaria, Locusta migratoria, Teleogryllus commodus, Periplaneta americana, and Extatosoma tiaratum. The neurons have wide and divergent arborizations in the medulla, in the lamina, and in several regions of the midbrain, including the superior and inferior lateral protocerebrum and areas between the pedunculi and -lobes of the mushroom bodies. Species-specific differences were found in this third cell group with regard to the number of immunoreactive cells, midbrain arborizations, and contralateral projections, which are especially prominent in the cockroach and virtually absent in crickets. The unusual branching patterns and the special neurochemical phenotype suggest a particular physiological role of these neurons. Their possible function as circadian pacemakers is discussed.  相似文献   

12.
Summary The crustacean optic neuropiles, the lamina ganglionaris and especially the medulla externa, show a specific pattern of green fluorescence with the fluorescence histochemical method of Falck-Hillarp. Normally, only the terminals and the cell bodies fluoresce, but in reserpine-treated animals exogenous catecholamines are taken up by the whole adrenergic neuron and are thus visualized as a whole. Incubating crayfish optic neuropiles in dopamine or -methylnoradrenaline after reserpine treatment demonstrated a tangential neuron connecting the lamina and the medulla externa. The morphology of this tangential neuron differs from the two types of tangential neurons, Tan1 and Tan2, previously characterized with Golgi techniques. The catecholaminergic neuron thus constitutes a third tangential neuron type. Acknowledgement. The present study has been supported by the Swedish Natural Science Research Council, grant B 2760-009, the Magnus Bergvall foundation, and the Swedish Medical Research Council, grant 04X-712, the latter to Prof. Bengt Falck to whom we extend our gratitude. We are also indebted to Mrs. Rita Wallén and Miss Maria Walles for their skilled technical assistance. Reserpine (Serpasil®) was generously given to us by Hässle-Ciba-Geigy AB  相似文献   

13.
Summary Spherical aberration of the eyes of a spectrum of freshwater fishes was determined by photographing the refractive effects of excised crystalline lenses on multiple parallel split laser beams. In general, spherical aberration is minimized by the developmentally related variation in lens refractive index. However, spherical aberration is marked and non-monotonic in a non-visual species such as the bullhead. Furthermore, the size and variability of the aberration appears to be related to visual need as indicated by diet and feeding habits. For example, the lenses of predatory sight feeders such as the pike (Esox lucius) or rock bass (Ambloplites rupestris) are optically superior to that of an omnivorous feeder as the carp (Cyprinus carpio).The effect of age was tested by examining rock bass lenses from fish two to seven years of age. Lens quality, as indicated by the amount of change in posterior focal length for beams of varying eccentricity from the optic axis, is optimum in lenses from five year old fish. The significance of this variation in lens quality is uncertain and requires further study with greater attention to specimens of advanced age.  相似文献   

14.
Light and electron microscopic techniques were used to study the cellular and ultrastructural components of the regenerating adult eye of the marine prosobranch gastropod Ilyanassa obsoleta. Behavioral tests were used to determine return of vision in animals with generated eyes. As early as 3 days after removal of the adult eye, the regenerating eye primordium appeared as a pigmented mass of cells that invaginated from the surface epithelium in the area of the wound. Twelve days after eye removal, the regenerating eye was very similar to the postmetamorphic juvenile eye and to the adult eye: It contained a retinal layer, as well as an extracellular lens, cornea, connective tissue capsule, and forming optic nerve; vision had returned. Growth of the eye and its components was linear; size ratios established among forming eye components were maintained during growth. The events of eye regeneration appear to recapitulate embryonic eye formation. The sequence of invagination, pigmentation, and lens, optic nerve, and retinal pattern formation are similar.  相似文献   

15.
A slime-producing isolate of Staphylococcus epidermidis attached to FDA Group II hydrogel contact lenses persisted on rabbit eyes for up to 14 days, but except for minor redness of the eye no other effect was observed. Eye flora of eight representative New Zealand White rabbits included four different species of Staphylococcus including S. epidermidis and one species of Micrococcus, none of which produced overtly obvious biofilms. The slime-producing strain of S. epidermidis adhered more effectively to lenses than a non-slime-producing strain, and lenses challenged with the slime-producing strain remained on the rabbit eye for longer time periods than those with a non-slime-producing strain. Bacteria associated with the contact lens may affect the retention of the lens on the rabbit cornea during experimental studies.  相似文献   

16.
In seven species of lungless salamanders, family Plethodontidae, ranging from medium to very small in body size and from small to very large in cell size, the morphology of the eye and the retina were investigated. Haller's rule was only partially corroborated. While the smallest species had the relatively largest eyes, the largest two species, having the largest cells, showed the third and fourth largest eyes of the series. An effect of cell size was also found with regard to eye morphology. Small species with small cells as well as large species with large cells had relatively small retinae and relatively large lenses. In contrast, small eyes with relatively large cells had absolutely and relatively large retinae and relatively small lenses. The retinae of all investigated plethodontids showed a morphology typical for land vertebrates with two fiber and three nuclear layers. Rods, cones and double cones could clearly be distinguished. A fovea or area centralis was not found. Retina ganglion cell and photoreceptor counts show that the number of these elements was lower than in salamandrids. However, determination of the resolution power of miniaturized eyes based on morphological and behavioral data shows that this does not seem to constitute a functional disadvantage. The morphological and functional properties and constraints of eyes of miniaturized salamanders are discussed.  相似文献   

17.
The visual ecology of fishes places changing demands on their visual system during development. Study of changes in the eye can suggest possible changes in behavioral ecology. The spectral transmission of the pre-retinal ocular media controls the wavelength of light that reaches the retina and is a simply measured indication of their potential visual capabilities. Dascyllus albisella is a coral reef planktivore known to have UV-sensitive retinal cone cells. UV vision probably aids in detection of zooplankton. As a juvenile it is very closely associated with branching coral heads or, more rarely, sea anemones. As it matures, it ventures farther from its coral, above the reef, and eventually assumes a more vagile life style, moving farther and more frequently afield. Their eyes contain short-wavelength blocking compounds in the lens, cornea and humors. As they age, both the lens and the cornea accumulate blocking compounds that increase the 50% transmission cutoff of the whole eye from ca. 330nm in 2–3cm juveniles to ca. 360nm in the largest adults. The cornea increases its cutoff wavelength faster than the lens and becomes the primary filter in large adults. The cutoff of the aqueous and vitreous humors combined does not change with size. The slope of the transmission cutoff curve increases with the size of the fish. The increased blocking of UV radiation is likely not an adaptation to protect the eye from short-wavelength induced damage. Instead it probably reduces the image degradation effects of short-wavelength light in the largest eyes and still allows sufficient penetration of UV radiation to permit functional UV vision.  相似文献   

18.
Box jellyfish, or cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Compared to other cnidarians they also have an elaborate behavioral repertoire, which for a large part seems to be visually guided. Two of the four types of cubomedusean eyes, called the upper and the lower lens eye, are camera type eyes with spherical fish-like lenses. Here we explore the electroretinograms of the lens eyes of the Caribbean species, Tripedalia cystophora, and the Australian species, Chiropsalmus sp. using suction electrodes. We show that the photoreceptors of the lens eyes of both species have dynamic ranges of about 3 log units and slow responses. The spectral sensitivity curves for all eyes peak in the blue-green region, but the lower lens eye of T. cystophora has a small additional peak in the near UV range. All spectral sensitivity curves agree well with the theoretical absorbance curve of a single opsin, strongly suggesting color-blind vision in box jellyfish with a single receptor type. A single opsin is supported by selective adaptation experiments.  相似文献   

19.
Summary The longitudinal chromatic aberration (variation in the position of focus with wavelength) of corneal facet lenses of the houseflyMusca domestica is measured directly. The result is shown to agree with that calculated using the thick-lens formulas, the measured lens parameters and the dispersion of the refractive index of the lenses, measured with an interference microscope. The longitudinal chromatic aberration between the two wavelengths of peak absorption of fly rhabdomeres (360 nm and 495 nm) is about 2.5 m and comparable to the depth of focus of the lens, assuming the lens to be diffraction limited. Chromatic aberration is therefore expected to have little effect on optical image quality in the fly; in particular the effect on the modulation transfer function at the receptor level and on the angular sensitivity of the rhabdomeres is insignificant.Abbreviations LCA longitudinal chromatic aberration - MTF modulation transfer function  相似文献   

20.
Summary As part of a follow-up study to our previous investigation of the catecholaminergic neurosecretory cells in the brain of adult female locusts (Locusta migratoria migratorioides) by means of the formaldehyde-induced fluorescence method, we have attempted to specify the identity of the amines present in these cells by an immunohistological technique. Using a recently developed anti-dopamine serum, we have demonstrated that the majority of the cate cholaminergic median neurosecretory cells contain dopamine. Moreover, dopamine is present in some cell bodies of other zones of the brain, i.e. the median subocellar neurosecretory cells, perikarya in external areas of the protocerebrum, below the calyces, around the pedunculus, in the optic lobes (between the lobula and the medulla, between the medulla and the lamina), and in external zones of the tritocerebrum. Among the structured neuropils, which were particularly fluorescent in the formaldehyde-induced fluorescence method, only the pedunculus, the posterior part of the central body, the external zones of the - and lobes and the proximal part of the lamina contain little dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号