首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharides were isolated from two strains of Thiobacillus ferrooxidans and one strain each of Thiobacillus thiooxidans, Thiobacillus novellus and Thiobacillus sp. IFO 14570. Neutral sugars, 2-keto-3-deoxyoctonate, fatty acids and the rare 2,3-diamino-2,3-dideoxyglucose were detected in all lipopolysaccharides. Lipopolysaccharides of both T. ferrooxidans strains contained l-glycero-d-manno-heptose, whereas that of T. thiooxidans contained both l-glycero-d-manno-heptose and d-glycero-d-manno-heptose. On the other hand, heptoses were absent in lipopolysaccharides of T. novellus and Thiobacillus sp. IFO 14570. Lipid A of T. ferrooxidans and T. thiooxidans contained both glucosamine and 2,3-diamino-2,3-dideoxyglucose, in contrast, lipid A of T. novellus and the Thiobacillus sp. IFO 14570 most likely contain only 2,3-diamino-2,3-dideoxyglucose as backbone sugar. Deoxycholate polyacrylamide gel electrophoresis revealed S-type character for all lipopolysaccharides studied. The significance of the lipopolysaccharide composition for taxonomic and phylogenetic questions with regard to thiobacilli is discussed.Abbreviations DAG 2,3-diamino-2,3-dideoxyglucose - DOC sodium deoxycholate - GC gas-liquid chromatography - GC/MS gas-liquid chromatography/mass spectrometry - d,d-Heptose d-glycero-d-manno-heptose - l,d-Heptose l-glycero-d-manno-heptose - KDO 2-keto-3-deoxyoctonate - LPS lipopolysaccharide - 3-OH-14:0 3-hydroxy-tetradecanoic acid - PAGE polyacrylamide gel electrophoresis - PCP phenol-chloroform-petroleum ether  相似文献   

2.
The lipopolysaccharide of Ectothiorhodospira vacuolata was obtained by the phenol-water procedure. It contained a 3-O-methyl-hexose, glucose, galacturonic and glucuronic acids. The finding of d-glycero-d-mannoheptose and 2-keto-3-deoxyoctonate (tentatively identified) suggested a core-structure. The lipid fraction of the lipopolysaccharide contained phosphate and both, 2,3-diamino-2,3-dideoxy-d-glucose and d-glucosamine. The major fatty acids were amine-bound 3-OH-10:0 and 3-OH-12:0 and esterbound 14:0 and 16:0 Sodium deoxycholate gel-electrophoresis, showing a single band only, indicated R-type character of the lipopolysaccharide of Ectothiorhodospira vacuolata.Abbreviations DOC sodium deoxycholate - GC/MS combined gasliquid chromatography - PAGE polyacrylamide gel-electrophoresis  相似文献   

3.
The cell wall lipopolysaccharide of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum was obtained by the phenol-chloroform-petroleum ether and the hot phenol-water methods, respectively. It contained mannose, glucose, galacturonic acid, glucosamine, glycine, and small amounts of rhamnose, galactose and glucuronic acid. In addition to d-glycero-d-mannoheptose, the corespecific constituents 2-keto-3-deoxyoctonate and l-glycero-d-mannoheptose were found. Polyacrylamide gel-electrophoresis in the presence of sodium deoxycholate gave no indication for the presence of O-specific repeating units. Degradation of the lipopolysaccharide required 10% acetic acid (100° C, 2 h). The lipid A moiety contained the total of glucosamine of the lipopolysaccharide as well as small amounts of 2,3-diamino-2,3-dideoxy-glucose. It was phosphate-free. The fatty acid spectrum comprised 3-OH-14:0, 3-OH-16:0, and iso-3-OH-18:0 besides little 12:0, 14:0 and 16:0. Hydroxylaminolysis and sodium methylate treatment revealed all of the three hydroxy fatty acids to be amidebound.Abbreviations DOC sodium deoxycholate - PAGE polyacrylamide gel-electrophoresis  相似文献   

4.
The lipopolysaccharides of Rhodobacter sulfidophilus and the two budding species Rhodopseudomonas acidophila and Rhodopseudomonas blastica were isolated and chemically analyzed. The all have a lipid A backbone structure with glucosamine as the only amino sugar. The lipid A's of Rb. sulfidophilus and Rps. blastica contain phosphate, their fatty acids are characterized by ester-linked, unsubstituted 3-OH-10:0 and amide-linked 3-OH-14:0 (Rb. sulfidophilus) or 3-oxo-14:0 (Rps. blastica). Lipid A of Rps. acidophila is free of phosphate and contains the rare 3-OH-16:0 fatty acid in amide linkage.The lipopolysaccharides of all three species contain 2-keto-3-deoxy-octonate (KDO) but are devoid of heptoses. Neutral sugars with the exception of glucose are lacking in the lipopolysaccharide of Rb. sulfidophilus. This shows a high galacturonic acid content. The lipopolysaccharides of Rps. acidophila and Rps. blastica have neutral sugar spectra indicative for typical O-chains (rhamnose, mannose, galactose, glucose in both species, and in Rps. blastica additionally 2-O-methyl-6-deoxy-hexose). The taxonomic value of the data is discussed.This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

5.
Lipopolysaccharides were isolated from the moderate halophilic Ectothiorhodospira shaposhnikovii slight to and Ectothiorhodospira mobilis and from the extremely halophilic Ectothiorhodospira halophila by the hot phenol-water and purified by the phenol-chloroform-petroleum ether methods. The isolated lipopolysaccharides of all three species contained 3-deoxy-d-manno-octulosonic acid and d-glycero-d-mannoheptose indicating the existence of a core. They contained additionally glucose and uronic acids (E. shaposhnikovii and E. mobilis) or glucose, uronic acids and threonine (E. halophila). Sodium deoxycholate gel-electrophoresis of the three lipopolysaccharides, each showing only one major band, indicated R-type character of the lipopolysaccharides of the three Ectothiorhodospira species.The lipid A fractions of the lipopolysaccharides from E. shaposhnikovii and E. mobilis represented phosphorylated mixed lipid A types with both 2,3-diamino-2,3-dideoxy-d-glucose and d-glucosamine. The lipid A from E. halophila contained also phosphate and 2,3-diamino-2,3-dideoxy-d-glucose but only traces of d-glucosamine, which would indicated lipid ADAG. The fatty acid spectra were characterized by amide-bound 3-OH-10:0 and 3-OH-12:0 (E. shaposhnikovii), 3-OH-10:0 (E. mobilis), or 3-OH-10:0,3-OH-14:0, and 3-oxo-14-0 (E. halophila). The predominant ester-bound fatty acids were 14:0 and 16:0 (E. shaposhnikovii and E. mobilis), or 12:0 and 14:1 (E. halophila).Abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 3-deoxy-d-manno-octulosonic acid - GlcA glucuronic acid - GalA galacturonic acid - GC-MS combined gas liquid chromatographymass spectrometry - GlcN Glucosamine - DOC sodium deoxycholate - LPS lipopolysaccharide - PAGE polyacrylamide gel electrophoresis - PCP phenol-chloroform-petroleum ether  相似文献   

6.
Envelope preparations of chemotrophically and phototrophically grown Rhodospirillum tenue were isolated and characterized on the basis of their contents and composition in phospholipids and fatty acids, as well as on the basis of their enzyme activities, absorption spectra and polypeptide patterns. Both preparations were similar in their contents in phospholipids and fatty acids. Their total fatty acids were characterized by a rather high percentage of saturated fatty acids. The activities of the respiratory reactions were considerably higher in chemotrophic than in phototrophic membranes. This is true especially for activities of the terminal oxidase which were over 20 times greater. The affinities of the corresponding enzymes to their respective substrates (K m ) differed with differences in the culture conditions. Under chemotrophic conditions the K m values for the NADH-dependent reactions were lower than those values under phototrophic conditions, whereas the K m values for the succinate dependent reactions were higher. The low temperature (77°K) near infrared spectrum of the phototrophic membrane showed a peak at 875 nm which was not detectable in the chemotrophic membrane. The polypeptide patterns, in the presence of sodium dodecyl sulfate, of both preparations were quite similar except for the presence of two low molecular weight proteins (M. Wt. 12,000 and 10,000) in the phototrophic membrane which were absent in the chemotrophic membrane. Both envelope preparations were further fractionated into enriched cytoplasmic membrane and outer membrane fractions which were identified on the basis of their contents in 2-keto-3-deoxyoctonate, ubiquinone 8 and bacteriochlorophyll (in the case of the phototrophic membrane) and their enzyme activities. The buoyant densities of the corresponding fractions from both envelope preparations were found to be equal. The data presented in this paper demonstrate that envelope preparations of chemotrophically and phototrophically grown R. tenue are similar in their contents in 2-keto-3-deoxyoctonate, ubiquinone 8, phospholipids and fatty acids, yet differ significantly in their spectra, protein patterns and enzyme activities.Abbreviations BChl bacteriochlorophyll - UQs ubiquinone 8 - KDO 2-keto-3-deoxyoctonate - PG phosphatidyl glycerol - PE phosphatidyl ethanolamine - DCPIP 2,6-dichlorophenolindophenol - PMS phenazine methosulfate - SDS sodium dodecyl sulfate  相似文献   

7.
Zusammenfassung Die Thylakoide aus Rhodospirillum rubrum und Rhodospirillum molischianum werden nach Homogenisation der Zellen mit Ultraschall durch fraktionierte Zentrifugation isoliert. An diese Membranstrukturen ist das System der Photophosphorylierung gebunden. Die Aktivität dieses Systems in Abhängigkeit vom Redoxpotential des Mediums wird untersucht. Die stärkste Bindung anorganischen Phosphates wird unter Edelgasatmosphäre bei Zusatz von Spuren eines Elektronendonators (0,07 mol Succinat je Ansatz) beobachtet. Die cyclische Photophosphorylierung wird einerseits durch Sauerstoff und oxydierende Verbindungen wie K3Fe(CN)6 anderseits durch Überreduktion mittels reduzierter Redoxverbindungen wie 2,6-Dichlorphenolindophenol oder Phenazinmethosulfat (beide reduziert durch Ascorbat) unter Wasserstoffatmosphäre gehemmt. Die Sauerstoffhemmung kann durch reduziertes Phenazinmethosulfat zu 50% aufgehoben werden. Antimycin A blockiert die lichtabhängige Phosphorylierung; 2,4-Dinitrophenol dagegen hemmt kaum. Die zellfreien Systeme beider Arten zeigen die gleiche Abhängigkeit vom Redoxpotential obwohl R. rubrum wesentlich sauerstofftoleranter ist als R. molischianum und auch durch oxydative Phosphorylierung im Dunkeln ATP bilden kann. Die Befunde sprechen für eine Unabhängigkeit der cyclischen Photophosphorylierung von der Atmungskette und für eine starke Übereinstimmung im Aufbau der Elektronentransportsysteme für die cyclische Photophosphorylierung bei R. rubrum und R. molischianum.
Summary The isolated thylakoide-structures (chromatophores) of Rhodospirillum molischianum and Rhodospirillum rubrum are investigated with regard to activity of cyclic, light induced phosphorylation. A high activity of the photochemical apparatus needs an optimal external oxidation-reduction potential. Over-oxidation by oxygen or K3[Fe[CN)6] inhibit just as much as over-reduction by hydrogen and N-methyl phenazonium methosulfate or 2,6-dichlorphenol-indophenole both reduced with ascorbate. The highest activity is observed in hydrogen atmosphere without an electron-donator system or in helium with traces (0,07 mol) of succinate. The inhibitoryeffect of oxygen can partly be compensated by reduced PMS. The photochemical apparatus of R. molischianum and R. rubrum react nearly in the same way on changes of the external oxidation-reduction potential and both systems are strongly inhibited by antimycin A but not by low concentrations of 2,4-dinitrophenole. R. molischianum is a strict anaerobic organism and can grow only in the light and under low oxygen partialpressure. In comparison with it R. rubrum is more oxygen-tolerant. The strain can grow under conditions of aerobic dark metabolism. The present results together with those of other investigations provide strong evidence for the conclusion that the systems of cyclic photophosphorylation in both organisms have the same composition and are relatively independent from the respiratory chain.
  相似文献   

8.
Whole cells of Rhodospirillum salexigens, an obligatory halophilic bacterium, have a very low peptidoglycan content (0.17 mol muramic acid/mg cell dry weight) which is not sufficient to form a sacculus structure. The isolated peptidoglycan contains glucosamine: muramic acid: diaminopimelic acid: alanine: glutamic acid in molar ratios of 1:1:1:2:3. The degree of cross linking is 30%. A polysaccharide consisting of glucosamine, an unknown compound X and a 2-amino-2-deoxy-pentose (relative molar ratios; 1:2:1) was extracted into the water phase of phenol water extracts of whole cells. The polysaccharide co-sedimented with peptidoglycan when cell homogenates were centrifuged in the presence of 4% NaCl (100,000xg, 4 h) or on a sucrose gradient (20–60% sucrose, 28,000xg, 16 h) in the presence or absence of NaCl and/or EDTA.Lack of -hydroxy fatty acids and of 2-keto-3-deoxyoctonate in all phenol-water extract fractions as well as in the whole cell hydrolysate indicates the absence of common outer membrane lipopolysaccharide in R. salexigens. Removal of the cell surface layer exposed six proteins to labeling with radioactive iodine catalyzed by lactoperoxidase. These proteins are suggested to be constituents of the outer membrane of R. salexigens.Abbreviations Ala alamine - A2pm diaminopimelic acid - DDPT dimethyl-3,3-dithiobispropionimidate dihydrochloride - GlcN glucosamine - Glu glutamic acid - Gly glycine - His histidine - MurN muramic acid - SDS sodium dodecyl sulfate  相似文献   

9.
The lipopolysaccharides (LPS) of a rough (R) and a smooth (S) strain of Pseudomonas syringae pv. phaseolicola were analysed. The S-LPS revealed markedly more rhamnose and fucose, but less glucose, than the R-LPS. The presence of 3-O-methyl-rhamnose (acofriose) in the S-LPS was confirmed by cochromatography with authentic acofriose. SDS polyacrylamide gel electrophoresis of the S-LPS demonstrated a cluster of regularly spaced high molecular weight fractions, which was almost lacking in the R-LPS. The main fatty acids of the lipid A of both LPS species were 3-OH-10:0,3-OH-12:0,2-OH-12:0, and 12:0. Two N-linked diesters were demonstrated: 3-O(12:0)-12:0 and 3-O(2-OH-12:0)-12:0. S-LPS was subjected to mild hydrolysis and the degraded polysaccharide separated into three fractions by gel permeation chromatography on a Fractogel TSK HW-50 column. Fraction I, representing nearly only the O-specific side chain, consisted of rhamnose and fucose in a molar ratio of 4:1, with 4% of the rhamnose being 3-O-methylated (acofriose). Fraction II, representing mostly core material, was composed of glucose, rhamnose, heptose, glucosamine, galactosamine, alanine, and a still unidentified amino compound, in an approximate molar ratio of 3:1:1:1:1:1:1, and KDO. Fraction III consisted of released monomers and salts. The LPS was highly phosphorylated (3.28% phosphorus in the core fraction). The thus characterized composition of the LPS O-chain seems to be unique for the pathovar phaseolicola of P. syringae, although many similarities exist to other pathovars as well as to other bacterial species.Abbreviations LPS lipopolysacchairdes - GC/MS combined gas liquid chromatography-mass spectrometry - HVE high voltage electrophoresis - KDO 2-keto-3-deoxyoctonic acid - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecylsulfate P.s. pv. phaseolicola is termed P. phaseolicola in the text  相似文献   

10.
The chemical constitutional analysis of the lipopolysaccharide (LPS) isolated from Providencia rettgeri was carried out. Polyacrylamide gel electrophoresis using sodium dodecylsulfate or sodium deoxycholate showed that the lipopolysaccharide mostly consisted of short sugar chains. The lipid A was precipitated out after mild acid hydrolysis of LPS. From the supernatant degraded polysaccharide and unsubstituted core fractions were isolated. Compositional analysis of the core material revealed the presence of galacturonic acid, galactose, glucose, glucosamine, l-glycero-d-manno-heptose, 3-deoxy-d-manno-octulosonic acid, alanine and phosphorus. Methylation analysis of the core material indicated the presence of terminal units of glucose, galacturonic acid and glucosamine. The chemical structure of the lipid A was elucidated. It constitutes a -1,6-glucosamine disaccharide substituted on either side by ester and glycosidically-bond phosphate residues. The ester-bound phosphate was found to be substituted by a 4-amino-4-deoxy-l-arabinosyl residue. The amino groups of the backbone disaccharide are N-acylated by 3-O-(14:0)14:0 and 3-O-14:0.Two hydroxyl groups of the disaccharide are esterified by 3-O-(14:0)14:0 and 3-O-14:0. The taxonomical importance of these structural details will be discussed.Abbreviations LPS lipopolysaccharide - l-d-heptose l-glycero-d-manno-heptose - dOclA 3-deoxy-d-manno-octulosonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - PS degraded polysaccharide - glc-ms combined gas liquid chromatography-mass spectrometry  相似文献   

11.
The structural elucidation of lipid A of the cell wall lipopolysaccharide (LPS) ofRhodospirillum salinarum 40 by chemical methods and laser desorption mass spectrometry revealed the presence of a mixed lipid A composed of three different 1,4 bisphosphorylated β(1→6)-linked backbone hexosaminyl-hexosamine disaccharides, i.e. those composed of GlCN→GlcN, 2,3-diamino-2,3-dideoxy-d-Glc-(DAG)→DAG, and DAG→GlcN. Lipid A ofR. salinarum contained preferentially 3-OH-18:0 and 3-OH-14:0 as amide-linked andcisΔ11-18:1 and c19:0 as ester-linked fatty acids. The mass spectra of the liberated acyl-oxyacyl residues proved the concomitant presence of 3-O-(cisΔ11-18:1)-18:0 and 3-O-(c19:0)-14:0 as the predominating diesters in this mixed lipid A. The glycosidically linked and the ester-linked phosphate groups of the backbone disaccharide were neither substituted by ethanolamine phosphorylethanolamine, nor by 4-amino-4-deoxy-l-arabinose, in contrast to most of the enterobacterial lipid As. In the core oligosaccharide fraction, a HexA (1→4)HexA(1→5)Kdo-trisaccharide was identified by methylation analysis. The terminal HexA (hexuronic acid) is possibly 4-OMe-GalA, a component described here as an LPS constituent for the first time. LPS ofR. salinarum showed a lethality in C57BL/10 ScSN (LPS-responder)-mice) of an order of 10−1–10−2 of that reported forSalmonella abortus equi LPS, and it was also capable of inducing TNFα and IL6 in macrophages of C57BL/10ScSN mice.  相似文献   

12.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

13.
The structure of the lipopolysaccharide from Rhizobium meliloti 10406, a derivative of the wild-type strain MVII-1, was examined. The compositional analysis of its polysaccharide moiety demonstrated lack of heptose(s), but high contents in glucose, galacturonic acid and 2-keto-3-deoxy-octonate (dOclA) as characteristic features. The lipid A moiety consisted of a -1,6 linked glucosamine disaccharide carrying ester (at C-4) and glycosidically (at C-1) linked phosphate residues, both present exclusively as monoester phosphates but not as phosphodiesters. Ester- and amidelinked 3-hydroxy fatty acids were mostly present as non-3-O-acylated residues. Laser desorption mass spectrometry (LD-MS) revealed heterogeneity in the fatty acid substitution, as was also indicated by the non-stoichiometric ratios obtained by quantitative fatty acid analysis. The predominating lipid A structure contained at the reducing glucosamine residue ester-linked 3-hydroxy-tetradecanoic acid (3-OH-14:0) and amide-linked 3-OH-18:0, or 3-OH-18:1, respectively. The distal (non-reducing) glucosamine carried ester-bound the recently discovered 27-hydroxyoctacosanoic acid and 3-OH-14:0 and, as amide-linked fatty acid, mostly 3-hydroxy-stearic acid (3-OH-18:0).The isolated lipopolysaccharide exhibited a high extent of lethal toxicity in galactosamine-treated mice, comparable to that of enterobacterial lipopolysaccharide. The structural relationship of LPS and lipid A of Rhizobium meliloti to other rhizobial lipopolysaccharides and lipid A's with respect to questions of taxonomy and of phylogenetic relationships will be discussed.Abbreviations LPS lipopolysaccharide - dOclA 3-deoxy-D-mannooctulosonic acid (KDO) - GalA galacturonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - LD-MS laser desorption-mass spectrometry  相似文献   

14.
Decay of the bacteriochlorophyll excited state was measured in membranes of the purple bacteria Rhodospirillum (R.) rubrum, Rhodobacter (Rb.) sphaeroides wild type and Rb. sphaeroides mutant M21 using low intensity picosecond absorption spectroscopy. The excitation and probing pulses were chosen in the far red wing of the long wavelength absorption band, such that predominantly the minor antenna species B896 was excited. The decay of B896 was studied between 77 and 177K under conditions that the traps were active. In all species the B896 excited state decay is almost temperature independent between 100 and 177K, and probably between 100 and 300 K. In this temperature range the decay rates for the various species are very similar and close to 40 ps. Below 100 K this rate remains temperature independent in Rb. sphaeroides w. t. and M21, while in R. rubrum a steep decrease sets in. An analysis of this data with the theory of nuclear tunneling indicates an activation energy for the final transfer step from B896 to the special pair of 70cm-1 for R. rubrum and 30cm-1 or less for Rb. sphaeroides.Abbreviations B880 and B896 the main and long wavelength bacteriochlorophyll's of the LH-1 antenna - RC reaction centre - P special pair in the RC  相似文献   

15.
Lipopolysaccharides (LPS), isolated from four Mycoplana species, i.e. the type strains of M. bullata, M. segnis, M. ramosa and M. dimorpha, were characterized onto their chemical composition and their respective lipid A-types. Those of M. bullata and M. segnis showed on DOC-PAGE an R-type character and had lipid A's of the Lipid ADAG-type which exclusively contained 2,3-diamino-2,3-dideoxy-d-glucose as lipid A sugar. LPS's of M. ramosa and M. dimorpha showed, although only weakly expressed, ladder-like patterns on DOC-PAGE indicating some S-type LPS's and lipid A of the d-glucosamine type (Lipid AGlcN). M. bullata LPS contained mannose and glucose in major amounts and additionally l-glycero-d-mannoheptose, whereas M. segnis LPS was composed of rhamnose, mannose and glucose together with both, d-glycero-d-manno- and l-glycero-d-manno-heptoses in a molar ratio of 1:2. All LPS's contained 2-keto-3-deoxy-octonic acid (Kdo), phosphate and an unidentified acidic component X. In addition to X, M. segnis LPS contained glucuronic and galacturonic acids, whereas M. ramosa LPS contained only galacturonic acid. Acetic acid hydrolysis of the LPS resulted in splitting off lipid A moieties, very rich in 3-hydroxy fatty acids, in particular in 3-OH-12:0 (in Lipid ADAG), or in 3-OH-14:0 (in Lipid AGlcN). Analysis of the 3-acyloxyacyl residues revealed major amounts of amide-linked 3-OH(3-OH-13:0)12:0 in lipid A of M. bullata and 3-OH(12:0)12:0 in lipid A of M. segnis. The rare 4-oxo-myristic acid (4-oxo-14:0) was observed only in M. bullata LPS, where it is ester-linked. Amide linked diesters could not be traced in M. ramosa and M. dimorpha. All four lipid A's lacked erster-bound acyloxyacyl residues.Non-standard abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 2-keto-3-deoxy-octonate - LPS lipopolysaccharide - PITC phenyl isothiocyanate - NANA N-acetyl neuraminic acid  相似文献   

16.
Methods were identified for the introduction of plasmid DNA into Rhodospirillum rubrum, including freeze-thaw and CaCl2-based techniques.Abbreviations cfu colony forming units - DMSO dimethyl sulfoxide - DTT dithiothreitol - O.D.680 optical density at 680 nm  相似文献   

17.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

18.
The photosynthetic bacterium, Rhodospirillum rubrum (ATCC 11170), was tested for its ability to fix nitrogen (acetylene reduction) under aerobic and dark-anaerobic conditions. Whole cells reduced acetylene under darkanaerobic conditions if pyruvate was supplied. Reactions of the cells were inhibited less by oxygen in the dark than in the light, and the cells were capable of acetylene reduction in the presence of low levels of oxygen (0.6%) in the dark. Crude extracts of R. rubrum reduced acetylene if pyruvate and Coenzyme A were added; ferredoxin from R. rubrum greatly increased the pyruvate-driven activity in crude extracts. It was not possible to demonstrate light-driven acetylene reduction in crude extracts unless a reductant (dithionite) was added.Abbreviations Fld flavodoxin - DTT dithiothreitol  相似文献   

19.
Hot phenol-water extractions were carried out of cells from 12 strains of the fast-growing rhizobia Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifolii and Rhizobium meliloti. Purified lipopolysaccharide preparations contain neutral sugars, hexosamines, 2-keto-3-deoxyoctonate and uronic acids. Glucose, galactose, mannose, rhamnose and fucose are present in the majority of the LPS-preparations, but in varying proportions. Heptose was only found in some of them. O-methylated sugars are present in small amounts is most preparations, the kind of sugar being characteristic for lipopolysaccharides from different species. The lipid A part of lipopolysaccharides from all strains examined has identical patterns of fatty acids, namely -OH-C14:0, -OH-C15:0 (anteiso branched), -OH-C16:0 and -OH-C18:0. Comparison of the total compositions of Rhizobium lipopolysaccharides shows many differences among different species as among strains of a single species. Nearly identical lipopolysaccharide compositions also exist among certain strains, which constitute the same chemotype and which are also immunologically related. In view of a possible role of surface carbohydrates of Rhizobium in the root nodule symbiosis, the specificity of the binding of legume lectins with exo- and lipopolysaccharides of Rhizobium is discussed.Non-Standard Abbreviations LPS lipopolysaccharide(s) - EPS exopolysaccharides(s) - cetavlon cetyltrimethylammoniumbromide - KDO 2-keto-3-deoxyoctonate - ECL equivalent chain length Part II on Surface Carbohydrates of Rhizobium  相似文献   

20.
The kinetic and regulatory properties of partially purified phosphoenolpyruvate (PEP) carboxykinase (EC 4.1.1.32) from Rhodospirillum rubrum were studied. The enzyme was active with guanosine-and inosinephosphates and must thus be classified as GTP (ITP): oxaloacetate carboxylyase (transphosphorylating). In the direction of oxaloacetate-formation, the enzyme was strongly inhibited by ATP (Ki=0.03 mM). ITP, UTP, CTP and GTP were less inhibitory. The inhibition was competitive with respect to GDP or IDP, but not with respect to PEP. In the direction of PEP-synthesis, the enzyme was not inhibited, but rather activated by ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号