首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Defects in the acd gene (which may be allelic to ubiH) result in the inactivation of the coenzyme A-linked acetaldehyde dehydrogenase activity of the multifunctional AdhE protein of Escherichia coli. This activity is restored by addition of ubiquinone-0 to cell extracts. However, the alcohol dehydrogenase activity of the AdhE protein is not decreased by an acd mutation. Abolition of ubiquinone biosynthesis by mutation of ubiA or ubiF does not affect either the acetaldehyde dehydrogenase or the alcohol dehydrogenase activity of AdhE. Guaiacol (2-methoxyphenol), which resembles the intermediate that builds up in ubiH mutants, except in lacking the octaprenyl side-chain, was found to inhibit ethanol metabolism in vivo, presumably via inhibition of acetaldehyde dehydrogenase. In vitro assays confirmed that guaiacol inhibited acetaldehyde dehydrogenase. This suggests that the acetaldehyde dehydrogenase activity of AdhE is specifically inhibited by intermediates of ubiquinone synthesis that accumulate in acd mutants and that this inhibition may be relieved by ubiquinone.  相似文献   

2.
Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.  相似文献   

3.
Mutants of Escherichia coli which overproduce alcohol dehydrogenase were obtained by selection for the ability to use ethanol as an acetate source in a strain auxotrophic for acetate. A mutant having a 20-fold overproduction of alcohol dehydrogenase was able to use ethanol only to fulfill its acetate requirement, whereas two mutants with a 60-fold overproduction were able to use ethanol as a sole carbon source. The latter two mutants produced only 25% of the wild-type level of nitrate reductase, when grown under anaerobic conditions. Alcohol dehydrogenase production was largely unaffected by catabolite repression but was repressed by nitrate under both aerobic and anaerobic conditions. The genetic locus responsible for alcohol dehydrogenase overproduction was located at min 27 on the E. coli genetic map; the gene order, as determined by transduction, was trp tonB adh chlC hemA. The possible relationship of alcohol dehydrogenase to anaerobic redox systems such as formate-nitrate reductase is discussed.  相似文献   

4.
Summary Mutants of Escherichia coli resistant to chloroethanol or to chloroacetaldehyde were selected. Such mutants were found to lack the fermentative coenzyme A (CoA) linked acetaldehyde dehydrogenase activity. Most also lacked the associated fermentative enzyme alcohol dehydrogenase. Both types of mutants, those lacking acetaldehyde dehydrogenase alone or lacking both enzymes, mapped close to the regulatory adhC gene at 27 min on the E. coli genetic map. The previously described acd mutants which lack acetaldehyde dehydrogenase and which map at 63 min were shown to be pleiotropic, affecting respiration and growth on a variety of substrates. It therefore seems likely that the structural genes for both the acetaldehyde and alcohol dehydrogenases lie in the adhCE operon. This interpretation was confirmed by the isolation of temperature sensitive chloracetaldehyde-resistant mutants, some of which produced thermolabile acetaldehyde dehydrogenase and alcohol dehydrogenase and were also found to map at the adh locus. Reversion analysis indicated that mutants lacking one or both enzymes carried single mutations. The gene order in the adh region was determined by three point crosses to be trp - zch:: Tn10 - adh - galU- bglY - tyrT - chlC.  相似文献   

5.
Abstract Mutants unable to use ethanol for carbon and energy were counterselected from an ethanolutilizing mutant of Escherichia coli K12 derepressed for alcohol dehydrogenase (ADH). Mutants of one class were devoid of ADH activity under anaerobic conditions but exhibited aerobic activities comparable to those of wild-type E. coli. Mutants of a second class exhibited ADH activity levels intermediate between those of the wild-type and derepressed parent. Immunological studies showed that mutants of the former class synthesized far less ADH protein than did the derepressed parent while mutants of the latter class synthesized about the same amount. The ADH mutations in both classes were located within the previously described adh region which contains the structural gene for the activity that is derepressed in the parent. An Eth adh-lac fusion mutant with an insertion in the structural gene was also isolated and characterized. It exhibited no ADH activity under anaerobic conditions and wild-type levels under aerobic conditions. These data are consistent with the existence in E. coli of distinct aerobic and anaerobic ADH enzymes and a derepression of the anaerobic but not the aerobic enzyme in the ethanol utilizing strain.  相似文献   

6.
Sixteen Tn916-induced mutants of Clostridium acetobutylicum were selected that were defective in the production of acetone and butanol. Formation of ethanol, however, was only partially affected. The strains differed with respect to the degree of solvent formation ability and could be assigned to three different groups. Type I mutants (2 strains) were completely defective in acetone and butanol production and contained one or three copies of Tn916 in the chromosome. Analysis of the mutants for enzymes responsible for solvent production revealed the presence of a formerly unknown, specific acetaldehyde dehydrogenase. The data obtained also strongly indicate that the NADP+-dependent alcohol dehydrogenase is in vivo reponsible for ethanol formation, whereas the NAD+-dependent alcohol dehydrogenase is probably involved in butanol production. No activity of this enzyme together with all other enzymes in the acetone and butanol pathway could be found in type I strains. All tetracycline-resistant mutants obtained did no longer sporulate.Non-standard abbreviations AADC acetoacetate decarboxylase - AcaDH acetaldehyde dehydrogenase - BuaDH butyraldehyde dehydrogenase - CoA-TF acetoacetyl coenzyme A: acetate/butyrate: coenzyme A transferase - NAD-ADH, NAD+ dependent alcohol dehydrogenase - NADP-ADH, NADP+ dependent alcohol dehydrogenase  相似文献   

7.
8.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

9.
A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane.  相似文献   

10.
Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.  相似文献   

11.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

12.
The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO(2) was significantly reduced, but fermentative H(2) production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.  相似文献   

13.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

14.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

15.
16.
17.
Mutants of Clostridium acetobutylicum ATCC 824 exhibiting resistance to 2-bromobutyrate or rifampin were isolated after nitrosoguanidine treatment. Mutants were screened for solvent production by using an automated alcohol test system. Isolates were analyzed for levels of butanol, ethanol, acetone, butyrate, acetate, and acetoin in stationary-phase batch cultures. The specific activities of NADH- and NADPH-dependent butanol dehydrogenase and butyraldehyde dehydrogenase as well as those of acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (butyrate-acetoacetate coenzyme A-transferase [EC 2.8.3.9]) (CoA-transferase), butyrate kinase, and phosphotransbutyrylase were measured at the onset of stationary phase. Rifampin-resistant strain D10 and 2-bromobutyrate mutant R were found to be deficient in only CoA-transferase, while several other mutants exhibited reduced butyraldehyde dehydrogenase and butanol dehydrogenase activities as well. The colony morphology of 2-bromobutyrate mutant R was similar to that of the parent on RCM medium; however, it had about 1/10 the level of CoA-transferase and increased levels of butanol dehydrogenase and butyraldehyde dehydrogenase. A nonsporulating, spontaneously derived degenerated strain exhibited reduced levels of butyraldehyde dehydrogenase, butanol, dehydrogenase, and CoA-transferase compared with those of the original strain. When C. acetobutylicum ATCC 824 was grown on medium containing low levels of 2-bromobutyrate, an altered colony morphology was observed. Not all strains resistant to 2-bromobutyrate (12 mM) were non-solvent-producing strains.  相似文献   

18.
The nucleotide sequence of a 2081-bp fragment of Clostridium acetobutylicum DNA containing the adh1 gene was determined. The butanol dehydrogenase gene is referred to as the adh1 gene since it was shown to have activity using butanol and ethanol as substrates. The adh1 gene consisted of 1164 bp and encoded an alcohol dehydrogenase (ADH) enzyme of 388 aa residues with an Mr of 43,274. The adh1 gene was separated from an upstream open reading frame by an intergenic region of 354 bp. No promoter consensus sequences were identified in the intergenic upstream region and the adh1 gene did not appear to be expressed off its own promoter in Escherichia coli. Three separate types of ADH have been recognized. The ADH1 from C. acetobutylicum exhibited 39% homology with the Fe-containing ADH2 from Zymomonas mobilis and 37% homology with the ADH4 from Saccharomyces cerevisiae, but showed little or no homology with the other characterised types of ADH.  相似文献   

19.
Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively.  相似文献   

20.
M Nieder  B Sunarko    O Meyer 《Applied microbiology》1990,56(10):3023-3028
Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号