首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to identify a suitable freezing protocol for rabbit semen by comparing the effects of different concentrations and equilibration times of dimethylacetamide (DMA) and dimethylsulfoxide (DMSO) on the postthaw quality of the semen. After establishing the best protocols for each cryoprotectant, their efficacy was compared by examining the in vivo fertilizing capacity of the semen samples. Pooled semen samples diluted in freezing medium containing 4%, 6%, or 8% DMA or DMSO (all combined with 1% sucrose as a nonpermeating cryoprotectant) were loaded in straws and equilibrated for 5, 15, or 45 min before freezing in liquid nitrogen vapor. The variables assessed after thawing were sperm motility, viability, osmotic resistance, and acrosome and DNA integrity. Marked effects on these variables were shown by the cryoprotectant concentration and equilibration time, with best results obtained using DMA 6% or DMSO 8% and equilibration times of 45 min. These freezing protocols were selected to compare the two cryoprotectants in an insemination trial. Three groups of 114 rabbit does (28 nulliparous and 86 multiparous in each group) were inseminated with fresh semen or with semen frozen using the optimized DMA or DMSO protocols. Fertility rates and numbers of kids born were similar, respectively for the DMSO-frozen (79.8% and 7.7 ± 0.3 young per kindling) and fresh semen (81.6% and 8.6 ± 0.3) yet higher (P ≤ 0.05) than the rates returned using the DMA-frozen semen (47.4% and 6.7 ± 0.4). Moreover, the numbers of rabbits born alive when DMSO was used in the freezing protocol, despite being lower than those recorded using fresh semen, were higher than when DMA was used as the cryoprotectant (P < 0.05). The physiological status of the does (nulliparous or multiparous) had no influence on the fertility and prolificacy results. Our findings indicate that the cryosurvival of rabbit sperm frozen using DMSO or DMA as the cryoprotectant is highly influenced by the concentration of cryoprotectant used and the time the semen is exposed to the agent before freezing. According to our in vivo fertility and prolificacy data, DMSO emerged as more effective than DMA for the cryopreservation of rabbit sperm.  相似文献   

2.
An effective method for freezing White Italian gander semen   总被引:2,自引:0,他引:2  
Efficiency of freezing method, worked out for the White Italian gander semen was evaluated by comparing motility, morphology and fertilizing ability of spermatozoa in fresh and frozen-thawed semen. A part of pooled semen, collected from 25 White Italian ganders by dorso-abdominal massage was used immediately for artificial insemination of 10 geese (the control group) with a dose of 80 microl. This insemination was performed six times at weekly intervals. The remainder of the semen was diluted 1:0.5 (v/v) with EK diluent, equilibrated for 15 min at +4 degrees C, mixed with 6% (v/v) of dimethylformamide (DMF) and frozen to -140 degrees C at a rate of 60 degrees C/min. Frozen semen was thawed in a 60 degrees C water-bath and inseminated twice weekly in a dose of 100 microl (10 females of the experimental group, 12 inseminations were made). The freezing process affected spermatozoa motility and morphology, but had no effect on their fertilizing ability. Positive movement was observed in 50-60% of the spermatozoa in fresh semen and about 40% of the frozen-thawed cells. The average percentage of total live and live normal spermatozoa decreased due to freezing from 92.2 to 68.4% and from 34.7 to 14.1%, respectively. After the fresh semen insemination with average 12 million of the live normal spermatozoa per week average fertility was 88.24%; hatchability of set eggs was 80.88% and hatchability of fertile eggs was 91.67%. For frozen-thawed semen inseminated with average 9.5 million of the undamaged spermatozoa per week, the average fertility and hatchability rate was 83.78, 73.87, and 88.17%, respectively. Fecundity rates obtained after insemination with the frozen-thawed gander semen allow for the application of the freezing technique into breeding practice, in place of natural mating or to assist natural mating in periods of lowered fertility level.  相似文献   

3.
The effects of the introduction of an 8-h asynchrony between ovulation and insemination on litter size components from rabbits were assessed. A total of 202 females belonging to a maternal line were used. Fresh and frozen sperm were used to perform the inseminations. Sperm was frozen with an extender composed of 1.75 M DMSO and 0.05 M sucrose. Four experimental groups were obtained depending on the type of sperm used (fresh or frozen) and on the moment that ovulation had been induced relative to the insemination (at the same time as insemination (t(0)) or 8 h before insemination (t(8))). Laparoscopy was performed on 12th day of pregnancy in pregnant females, and the ovulation rate, normal and total implanted embryos were noted. At kindling, total and live-born rabbits were noted. Results showed that better results were obtained after insemination with fresh semen than with frozen sperm (for females in the group t(0): 79% versus 61% fertility rate, 10.2 versus 6.4 normal implanted embryos and 8.1 versus 5.2 total number born, for fresh and frozen sperm, respectively). On the other hand, after the introduction of an 8-h asynchrony between ovulation and insemination, results were lower for both fresh (50% fertility rate, 7.5 normal implanted embryos and 5.7 total number born for the group of the asynchrony) and frozen sperm (31% fertility rate, 4.6 normal implanted embryos and 3.4 total number born for the group of the asynchrony). Although an approach between the moment of insemination and ovulation is justified when sperm survival could be compromised, results observed after the induction of an 8-h asynchrony were not those expected, perhaps due to the ageing of the oocytes before being fertilised, leading to both lack of fertilisation or early embryonic mortality.  相似文献   

4.
Viveiros AT  So N  Komen J 《Theriogenology》2000,54(9):1395-1408
Methods for cryopreserving spermatozoa and optimizing sperm:egg dilution ratio in African catfish Clarias gariepinus were developed. Five percent to 25% DMSO and methanol were tested as cryoprotectants, by diluting semen in Ginzburg fish ringer and freezing in 1-milliliter cryovials in a programmable freezer. To avoid an excess of spermatozoa per egg, post-thaw semen was diluted 1:20, 1:200 or 1:2,000 before fertilization. Highest hatching rates were obtained by spermatozoa frozen in 10% methanol and post-thaw diluted to 1:200. Then, slow freezing rates (-2, -5 or -10 degrees C/min) to various endpoint temperatures (range -25 to -70 degrees C) before fast freezing in liquid nitrogen (LN2) were evaluated. Hatching rates equal to control (P > 0.05) were obtained by spermatozoa frozen at -5 degrees C/min to -45 to -50 degrees C and at -10 degrees C/min to -55 degrees C. In 3-step freezing programs, at -5 degrees C/min, the effect of holding spermatozoa for 0, 2 or 5 min at -30, -35 or -40 degrees C before fast freezing in LN2 was analyzed. Hatching rates equal to control (P > 0.05) were produced by spermatozoa frozen to, and held at, -35 degrees C for 5 min and at -40 degrees C for 2 or 5 min. Finally, frozen spermatozoa (10% methanol, -5 degrees C/min, 5-min hold at -40 degrees C, LN2, post-thaw diluted to 1:200) were tested in on-farm fertilization conditions. Again, no difference (P > 0.05) in hatching rate was observed between frozen and fresh spermatozoa. Cryopreservation offers utility as a routine method of sperm storage and management for catfish.  相似文献   

5.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

6.
Ram spermatozoa are most susceptible to damage during freezing between the temperatures of -10 degrees C and -25 degrees C. The objectives of the present study were to examine how freezing rate through this critical temperature zone affected the fertility of spermatozoa as assessed in vivo and in vitro. Semen from six adult rams was frozen at two different rates ("fast": 5 degrees C/min from +5 to -25 degrees C; "slow": 0.5 degrees C/min from +5 to -25 degrees C). In Experiment 1, semen from the fast and slow treatments was used to fertilize ovine oocytes that had been matured in vitro. Semen from the fast treatment yielded a higher cleavage rate (57% vs. 26%; P<0.001) and more blastocysts per oocyte (28% vs. 13%, P<0. 001) than slow-frozen. No correlation was found between fertilizing ability and viability as assessed by fluorescent probes. Experiment 2 was designed to establish the conception rates following both cervical and intrauterine insemination of frozen-thawed semen from the same bank of semen as used in Experiment 1. Ewes were superovulated with FSH and inseminated by laparoscopy with frozen semen. A significant difference was found in the number of fertilized ova following embryo recovery (81.4% vs. 39.3%; P<0.001). In a further study, 119 mature cull ewes were inseminated following a 12-day synchronization treatment with frozen semen by either intrauterine (laparoscopic) or cervical insemination. Insemination with fast-frozen semen resulted in a significantly higher pregnancy rate (P<0.05) irrespective of method of insemination. The data show that freezing rate affects the proportion of spermatozoa that retain their fertilizing ability post-thawing. However, once fertilization has occurred, development to the blastocyst stage is independent of freezing rate.  相似文献   

7.
Semen of Greylag (Anser anser L.) ganders was frozen according to a method previously elaborated by the authors for freezing the White Koluda gander semen. Semen was collected from five to eight Greylag ganders, twice a week during three succeeding reproductive cycles, by dorso-abdominal massage. Semen samples were diluted in the ratio of 1:1 or 2:1 (two parts semen: one part diluent) with EK diluent, supplemented by 6% DMF, equilibrated and pre-frozen to -140 degrees C at a rate 60 degrees C/min, before being transferred into liquid nitrogen container. Semen samples thawed in a water bath of 60 degrees C were used for twice a week insemination in a volume of 200 microl. Three Greylag and three White Koluda geese were involved in frozen-thawed semen fertilizing ability test. The reproductive cycle of wild geese lasts usually about 6-7 weeks. The ejaculate volume (30-140 microl) and sperm concentration (10x10(6) to 150x10(6) ml(-1)) are much lower than these of domestic ganders, but spermatozoa morphology is similar, particularly while compared to 1-year-old White Koluda ganders semen. There are about 90% of live spermatozoa and about 30% of live morphologically normal cells in Greylag gander fresh semen. The Greylag gander spermatozoa susceptibility to cryopreservation procedure is as high as in domestic ganders. Dilution ratio 2:1 resulted in higher number of live spermatozoa, which withstood cryoinjury stress. In relation to fresh semen about 60% of spermatozoa remained intact (on the basis of light microscope examination) in the frozen-thawed semen. Insemination of frozen-thawed semen resulted in 37.5% of fertile eggs in Greylag and 25.0% in White Koluda geese. Low fertility rate was caused by an insufficient number of live normal spermatozoa used for insemination (about three million in every dose).  相似文献   

8.
Ram semen was processed for freezing after initial dilution with a modified Tris-fructose diluent. Two aliquots were processed by cooling gradually to 5 degrees C, further dilution, equilibration and freezing in 0.5 ml straws either in pressurized liquid nitrogen (LN(2)) vapor (Method A) or on a block of dry ice (Method B). A third aliquot was cooled rapidly to 16 degrees C and then slowly to 5 degrees C, diluted further, equilibrated and frozen in straws in pressurized LN(2) vapor (Method C). The second dilution was carried out using a new diluent based on dextran-lactose. The diluted semen was equilibrated for 2 h before freezing. Semen was evaluated by artificial insemination (AI). The fertility of ewes bred by a double insemination with frozen-thawed semen processed by Methods A, B and C was 73% (n = 33), 67% (n = 30) and 80% (n = 30), respectively. In comparison, the fertility of ewes inseminated with fresh semen was 93% (n = 31). These preliminary data indicate an acceptable fertility can be achieved by AI with frozen-thawed semen processed using improved procedures.  相似文献   

9.
New aspects of boar semen freezing strategies   总被引:1,自引:0,他引:1  
Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred. There is ongoing research to improve sperm survival after thawing, to limit the damage occurring to spermatozoa during freezing, and to further minimize the number of spermatozoa needed to establish a pregnancy. Boar spermatozoa are exposed to lipid peroxidation during freezing and thawing, which causes damage to the sperm membranes and impairs energy metabolism. The addition of antioxidants or chelating agents (e.g. catalase, vitamin E, glutathione, butylated hydroxytoluene or superoxide dismutase) to the still standard egg-yolk based cooling and freezing media for boar semen, effectively prevented this damage. In general, final glycerol concentrations of 2-3% in the freezing media, cooling rates of -30 to -50 degrees C/min, and thawing rates of 1200-1800 degrees C/min resulted in the best sperm survival. However, cooling and thawing rates individually optimized for sub-standard freezing boars have substantially improved their sperm quality after cryopreservation. With deep intrauterine insemination, the sperm dose has been decreased from 6 to 1x10(9) spermatozoa without compromising farrowing rate or litter size. Minimizing insemination-to-ovulation intervals, based either on estimated or determined ovulation, have also improved the fertility after AI with cryopreserved boar semen. With this combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved, facilitating the use of cryopreserved boar semen in routine AI programs.  相似文献   

10.
E Lukaszewicz 《Theriogenology》2001,55(9):1819-1829
Feces, urates or dirt originating from feathers often contaminate gander semen during collection, threatening its fertilizing ability. Seminal plasma used as a diluent has a similar effect, particularly on spermatozoa subjected to cryopreservation or short-term storage under refrigeration. The aim of the experiments was to evaluate the effects on spermatozoa motility, morphology and fertilizing ability after minimizing the influence of the contaminants by semen filtration or dilution prior to freezing. Pooled semen, collected twice a week from 9 White Italian ganders by dorso-abdominal massage, was divided into two parts. One sample was filtered and both were diluted in 1:1 or 1:0.5 (v/v) with EK diluent, equilibrated for 15 min at +4 degrees C, mixed with dimethyl-acetamide (DMA) in the final concentration 6% (v/v) and frozen to -140 degrees C in a computerized freezer, at a rate of 60 degrees C/min. In fresh and processed (filtered, freeze-thawed) semen were examined the spermatozoa motility and morphology, and fertilizing ability for freeze-thawed semen, both for unfiltered and filtered. In freeze-thawed semen no tangible differences due to experimental factors were observed in motility and percent of live spermatozoa in total. On average 35 to 42% of the spermatozoa survived the freezing process, but only 10 to 15% were normal, without any damage visible under the light microscope. The fertility of unfiltered freeze-thawed semen inseminated twice a week in a 0.2 mL dose (about 3 to 5 x 10(6) of live normal spermatozoa each) averaged 66.1% and hatchability of the set eggs 57.1 and 86.5% of the fertile eggs. The fertility obtained after the insemination with semen filtered prior to freezing was lower (64.3%), but hatchability was slightly higher (58.6 and 91.1% of set and fertile eggs, respectively). The duration of fertility for filtered semen was longer than that for unfiltered, 10 days after the last insemination the eggs were still fertile. The fertility results of freeze-thawed gander semen were very promising taking into consideration the small amount of inseminated live normal spermatozoa and it is possible to improve this result by increasing the number of spermatozoa in the insemination dose.  相似文献   

11.
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender.  相似文献   

12.
Some reports indicate that sperm from different males differ in capacitation time, and other reports suggest that freezing sperm may affect their capacitation time. These two variables were specifically studied in rabbits in a fertility trial with 96 does inseminated with approximately 1.6 million motile fresh or frozen sperm from three different bucks at 15, 10, 5, and 0 h before expected ovulation. Fresh semen averaged 84% live (unstained) sperm and 88% had normal acrosomes; corresponding values for frozen sperm were 44% and 54%. On the basis of does that became pregnant, average litter size with fresh semen was 5.5 and with frozen semen was 4.8 (p greater than 0.05), but overall, does bred with frozen semen produced fewer young (p less than 0.05). On the basis of total does and total semen, average litter size from insemination at 15, 10, 5, and 0 h was 2.8, 4.2, 3.8, and 1.7, and average litter size for the three bucks was 4.0, 1.8, and 3.6. There was no interaction of type of semen (fresh or frozen) with the other variables in the model (p greater than 0.05). Bucks and time of insemination affected both the proportion of does that were pregnant and litter size (p less than 0.01). A major interaction between buck and time of insemination (p less than 0.01) was due apparently to both differential sperm survival and probable capacitation time among bucks. This major interaction should be considered in designing in vitro and in vivo fertility studies, and for selecting males for use in artificial insemination.  相似文献   

13.
Optimal freeze-thaw processes for dog semen will yield a maximal number of insemination doses from an ejaculate. The objectives of this study were to compare the effects of two straw sizes (0.25- and 0.5-mL French), two freezing rates (straws suspended 3.5 and 8 cm above liquid nitrogen) and two thawing rates (in water at 37 and 70 degrees C) upon post-thaw quality of dog semen, and to determine the best treatment combination. Quality was expressed in terms of the percentage progressively motile sperm 5 and 60 min after thawing and the percentage of abnormal acrosomes 5 min after thawing. One ejaculate from each of eight dogs was frozen. Two straws from each ejaculate were exposed to each of the eight treatment combinations. Data were analyzed by means of a repeated measures factorial analysis of variance and means compared using Bonferroni's test. Dog affected each response variable (P < 0.01). Neither straw size, nor freezing rate, nor thawing rate affected motility 5 min after thawing (P > 0.05). Half-milliliter straws resulted in 5.7% more progressively motile sperm 60 min after thawing and 6.5% fewer abnormal acrosomes than 0.25-mL straws (P < 0.05, n = 64). The percentage progressively motile sperm 60 min after thawing tended to be higher for semen thawed at 70 degrees C compared to 37 degrees C (P < 0.06, n = 64). Semen thawed in water at 70 degrees C had 6.6% fewer abnormal acrosomes than semen thawed in water at 37 degrees C (P < 0.05, n = 64). Freezing rate interacted with thawing rate (P < 0.05) in their effects upon acrosomal morphology and freezing 8 cm above liquid nitrogen and thawing in water at 70 degrees C was best. Dog semen should be frozen in 0.5-mL straws, 8 cm above liquid nitrogen and thawed in water at 70 degrees C.  相似文献   

14.
The aim of the present study was to elaborate cryopreservation methods for ex situ conservation of tench. Success of cryopreservation was tested during two series of experiments. The first set of experiments studied the effects of two types of cryoprotectants (DMSO and a combination of DMSO with propanediol at ratio 1:1) at concentrations of 8 and 10% and three different equilibration times in two different immobilization solutions (IS) (Kurokura 180 and Kurokura) before freezing (0.0, 2.0 and 4.0h after T(0)). The K4 cooling programme was used to freeze 1ml of cryoextended sperm using 1.8ml cryotubes. Main monitored parameter was hatching rate after using of cryopreserved sperm. The second set of experiments studied the volume effect of 0.5, 1 and 5ml straws and compared these with 1.8ml cryotubes as well as the effect of the cooling programme (K4 and L1). Following the results of the first study, a combination of DMSO and propanediol (ratio 1:1) at concentration of 10% was added to extended sperm in Kurokura 180 IS. Main monitored parameter was hatching rate after using cryopreserved sperm, supplementary parameters were sperm velocity and motility percentage assessed at 10s post-activation. Sperm was collected directly into IS and stored at 4 degrees C for 2.5h. Thereafter were sperm samples pooled, equlibred in IS (first set of experiments) or directly mixed with cryoprotectants (DMSO or a mixture of DMSO with propanediol at ratio 1:1) and transferred to 1.8ml cryotubes or straws (0.5, 1 and 5ml). Then the cryotubes/straws were directly transferred to pre-programmed PLANER Kryo 10 series III and cooled using two different cooling programmes including a slow cooling programme (a) named K4 (from +4 to -9 degrees C at a rate of 4 degrees Cmin(-1) and then from -9 to -80 degrees C at a rate of 11 degrees Cmin(-1)) and a rapid cooling programme (b) named L1 (directly from +4 to -80 degrees C at a rate of 20 degrees Cmin(-1)). Both slow (K4) and rapid (L1) cooled samples were held 6min at -80 degrees C. Finally, samples were transferred into liquid N(2). The frozen spermatozoa were thawed in a water bath (40 degrees C) according to the frozen volume and checked for fertilization and hatching rates. Percentage of sperm motility and sperm velocity were measured using video recorded frames. ANOVA showed a significant influence of frozen and fresh sperm in all treatments. The hatching rates of 33.8% were obtained when sperm was equilibrated for 0h before freezing in IS of Kurokura 180 and frozen with a 10% of mixture 1:1 of DMSO and propanediol into straws of 5ml and cooled using program L1. The velocity of frozen-thawed spermatozoa ranged from 31 to 46microms(-1) and in post-thawed sperm was not significantly different according to frozen sperm volume, but a higher velocity was obtained when sperm was fast frozen using programme L1. A large volume of frozen sperm could reveal the best procedure for freezing, but also for simulating methods of artificial propagation for future practical use of frozen tench sperm at a large scale.  相似文献   

15.
In vitro trials on the survival of sperm stored fresh or rediluted after freezing showed quite significant differences in the total survival time of sperm incubated at 37°C. Even after adjusting for different sperm concentrations, survival was still superior in the fresh compared with rediluted frozen sperm (124 ± 5.5 h vs. 75.8 ± 3.1 h). There was no significant difference in fertility between rediluted frozen sperm (RDF) and fresh sperm, both stored in Caprogen, when the insemination dose was 20 × 106 and 2.5 × 106 sperm, respectively. Reduction of the sperm concentration in the insemination dose from 20 × 106 to 5 × 106 sperm in RDF and from 2.5 × 106 to 0.5 × 106 sperm in fresh semen reduced non return rates by 7.9% and 7% respectively (P < 0.001). The bull × dose rate interaction for non return rate was not significant for fresh semen, but significant for RDF (P < 0.001). Two theoretical models were used to examine the effects of freezing on the survival of sperm in the female reproductive tract and the probability of fertilisation. There is a suggestion that freezing had no effect on survival time of sperm in the female reproductive tract, but either reduced the probability of fertilisation by a single spermatozoon or altered the pattern of sperm survival in the female reproductive tract.  相似文献   

16.
Gacitua H  Arav A 《Theriogenology》2005,63(3):931-938
Artificial insemination with frozen-thawed buck semen shows variable results which depend on many factors related to semen quality and the cryopreservation processing. We conducted experiments based on a new freezing method, directional freezing, of large volumes (8 ml). In the first experiment semen from three Saanen bucks, ages 1-2-years-old and genetically selected for milk improvement, was frozen individually. Two to three-years-old Saanen females (n = 164) were synchronized with controlled internal drug release (CIDR), pregnant mare serum gonadotrophin (PMSG) and prostaglandin. Double cervical inseminations were performed with frozen-thawed semen and fresh semen as control. In the second experiment we used pooled, washed frozen semen to examine the effect of washed seminal plasma. The motility after washing was 80-90% and after thawing was 55-65% for all bucks. The sperm concentration increased with the collections and the advance into the breeding season from 1.9 x 10(9) to 4.4 x 10(9) cell/ml average. Two inseminations were carried out at 8h intervals. The first insemination was performed at 32 h after CIDR withdrawal with fresh and frozen-thawed semen. Pregnancy rates were assessed by ultrasonography conducted 40 and 90 days post-insemination (from three bucks). Results were 58, 67, 50% with fresh semen, and for frozen semen were 33, 37 and 53%; these results were significantly different in one of the three bucks (P < 0.005). In the second experiment with pooled, washed semen the pregnancy rate was 41.6%, which compared with the average results of the frozen semen in the first experiment 38.9% no significant difference was found. We conclude that freezing buck semen in large volumes (8 ml) is possible. Cryobanking of buck semen will facilitate a genetic breeding program in goats and preservation of biodiversity. Washed semen did not improve the fertility of the semen when Andromed bull extender is used.  相似文献   

17.
The principal objective of this study was to derive an improved procedure for cryopreservation of swamp buffalo (Bubalus bubalis) spermatozoa. Experiments were conducted to determine effects of cooling rate, intermediate plunge temperature and warming rate on motility and acrosome integrity of spermatozoa. Spermatozoa were obtained from three bulls (three ejaculates/bull) and were subjected to nine cooling conditions before being frozen in liquid nitrogen: cooling at 10, 20, or 30 degrees C/min each to -40, -80, or -120 degrees C before being plunged into liquid nitrogen. The spermatozoa frozen under a given condition were then thawed either at 1000 or 200 degrees C/min. Cooling rate, intermediate temperature and warming rate significantly affected survival of spermatozoa obtained from the three bulls. Cooling spermatozoa from 4 to -120 degrees C either at 20 or 30 degrees C/min yielded better progressive motility compared to other cooling conditions (50 versus 30%). Rapid warming was superior to slow warming. In an additional study, motility and fertility of spermatozoa frozen after being cooled to -120 degrees C at 20 degrees C and 30 degrees C/min and those frozen by a standard protocol used routinely for semen processing were assessed. Progressive motility of cryopreserved spermatozoa cooled at 20 degrees C and 30 degrees C/min was 40%, while that of spermatozoa cryopreserved using a standard protocol was 25%. A total of 178 buffalo cows were inseminated with cryopreserved spermatozoa obtained from one bull, and their pregnancy status was assessed 60 days later by rectal palpation. Out of the 60, 26 (43%) and 23 of 58 (40%) cows inseminated with sperm cooled at 20 and 30 degrees C/min, respectively, became pregnant, whereas 17 of 60 (28%) cows inseminated with sperm frozen by a standard protocol became pregnant. This study demonstrates that an effective cryopreservation procedure for buffalo spermatozoa can be derived by systematic examination of various cryobiological factors.  相似文献   

18.
Using directional freezing, our objective was to cryopreserve rabbit semen and achieve fertility that was equal or higher than that achieved with conventional freezing. The working hypothesis was that controlling the ice-front propagation would allow reduction of DMSO concentration to <1M, in addition to the capability to freeze large volumes (2-10 mL). Moreover, single and double freezing of semen were used to demonstrate the abbreviated mechanical stress imparted by directional freezing. Single-cryopreserved semen from 15 males extended with 0% egg yolk/1.75 M DMSO, 15.3% egg yolk/0.88 M DMSO and 20% egg yolk/0M DMSO resulted in lower (P<0.05) mean+/-S.E.M. post-thaw motility (3.6+/-1.1, 28.5+/-2.8 and 36.3+/-1.8%, respectively) compared to fresh semen (73.3+/-1.2%). Semen from seven of these males, subject to double freezing using only egg yolk based extenders, resulted in post-thaw motilities of 18.1+/-2.2 and 16.4+/-3.3%. Despite the reduced functional parameters of cryopreserved semen, fertility and kindling rates of 73.9 and 56.5% for single frozen-thawed, and 28.6 and 35.7% for double frozen-thawed semen were achieved (with insemination of 98 females). There was no significant difference in fertility rate between fresh semen (87.5%) and semen that was single frozen-thawed with the 15.3% egg yolk/0.88 M DMSO extender (73.9%). In conclusion, cryopreservation of rabbit semen in large volumes using directional freezing achieved fertility rates similar to those achieved with fresh semen. Furthermore, acceptable fertility rates with double frozen-thawed semen could facilitate the future use of sex-sorted semen in rabbits.  相似文献   

19.
Ritar AJ  Campet M 《Theriogenology》2000,54(3):467-480
Methods of short-term storage and cryopreservation were examined for semen from striped trumpeter (Latris lineata). For fresh semen at 18 degrees C, the percentage of motile sperm declined rapidly from over 80% immediately after activation with sea water to less than 2% within 9 min after activation. The motility after activation of undiluted fresh sperm stored at 5 degrees C was maintained for two days and then declined markedly so that by the eighth day, sperm were mostly immotile after activation. The post-thawing motility was higher for sperm frozen with a non-activating diluent containing 2.84 M DMSO in saline (117 mM NaCl) than in an activating glycerol (2 M) medium in dilute sea water (300 mOsm). Post-thawing motility was higher for a dilution rate of 1:5 (semen:diluent) than 1:2 or 1:11 but was similar when frozen semen was thawed at 10 degrees, 20 degrees or 30 degrees C. For semen stored at a range of volumes as pellets frozen on dry ice (0.2 to 2.0 mL) or straws frozen in liquid nitrogen vapor (0.25 to 0.5 mL) and thawed in a waterbath at 20 degrees C, the post-thawing motilities were similar even though the patterns of cooling and thawing differed markedly between methods of freezing and sizes of pellets and straws.  相似文献   

20.
Cryopreserved semen has been utilised in the artificial insemination of livestock species for over 40 years, even though the detrimental effects of cryopreservation on sperm function and fertility are well documented. In the present study, computer-automated sperm-head morphometry was used to determine if goat sperm-head morphometry was affected by freezing and thawing. A microscope slide was prepared from single semen samples, collected by artificial vagina, from 10 sexually active Saanen bucks. The remainder of each sample was frozen in a tris-citrate-yolk extender. After thawing, semen smears were prepared on microscope slides. All slides were stained in haematoxylin and mean sperm-head measurements of length, width, width/length, area and perimeter were determined for each slide by computer aided sperm morphometry analysis. The effects of sperm freezing on sperm-head dimensions within and among all bucks were determined. No significant (P > 0.10) freezing effect was found between fresh semen and postthaw samples for length (7.00 μm vs 7.13 μm), width (3.77 μm vs 3.87 μm), width/length (0.54 μm vs 0.54 μm), area (19.67 μm2 vs 20.57 μm2) and perimeter (18.62 μm vs 18.83 μm) when analysed across all bucks. Significant differences (P < 0.05) were however found within three bucks for area, perimeter, length and width, with the percentage increase in measurements being significantly greater than in the remaining bucks. The variability of the morphometric dimensions were not affected by freezing. The results indicate that semen freezing did not affect the overall dimensions of sperm heads across the entire population of bucks sampled. However, since sperm-head dimensions from three bucks were affected, changes in sperm-head morphometry may be indicative of spermatozoa of the semen from individuals to successfully freeze. Because the overall mean sperm-head dimensions acquired from frozen/thawed semen were not different from those of fresh semen, previously reported measurements of goat sperm heads are probably reflective of fresh semen. More importantly, retrospective studies of sperm-head morphometry and fertility may now be performed utilising extensive breeding records from frozen semen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号