首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In early secretory transport, coat recruitment for the formation of coat protein I (COPI) vesicles involves binding to donor Golgi membranes of the small GTPase ADP-ribosylation factor 1 and subsequent attachment of the cytoplasmic heptameric complex coatomer. Various hypotheses exist as to the precise role of and possible routes taken by COPI vesicles in the mammalian cell. Here we report the ubiquitous expression of two novel isotypes of coatomer subunits gamma- and zeta-COP that are incorporated into coatomer, and show that three isotypes exist of the complex defined by the subunit combinations gamma 1/zeta 1, gamma 1/zeta 2, and gamma 2/zeta 1. In a liver cytosol, these forms make up the total coatomer in a ratio of about 2:1:2, respectively. The coatomer isotypes are located differentially within the early secretory pathway, and the gamma 2/zeta 1 isotype is preferentially incorporated into COPI vesicles. A population of COPI vesicles was characterized that almost exclusively contains gamma 2/zeta 1 coatomer. This existence of three structurally different forms of coatomer will need to be considered in future models of COPI-mediated transport.  相似文献   

2.
Iodinated human beta-endorphin was affinity-cross-linked to opioid receptors present in membrane preparations from bovine frontal cortex, bovine striatum, guinea pig whole brain, and rat thalamus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography revealed covalently labeled peptides of 65, 53, 41, and 38 kilodaltons (kDa). The 65- and 38-kDa peptides were present in all four tissues. The 41-kDa peptide was seen only in bovine caudate and guinea pig whole brain while the 53-kDa peptide was absent in rat thalamus. All four labeled peptides were constituents of opioid receptors since their labeling was fully suppressed by the presence of excess opiates, such as bremazocine, during binding. The distribution and levels of the labeled species in the brain tissues examined and, in earlier work, in the neuroblastoma X glioma NG 108-15 cell line suggested that the 65-kDa peptide is a binding component of mu receptors while the 53-kDa peptide is a binding subunit of delta receptors. This result was strongly supported by the finding that the labeling of the 65-kDa peptide is selectively reduced by the presence of the highly mu-selective ligand Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (DAMGE) during binding, while while the labeling of the 53-kDa peptide is selectively reduced or eliminated by the highly mu-selective ligand [D-Pen2, D-Pen5]enkephalin (DPDPE). The labeling of the 41- and 38-kDa bands was reduced by either DAMGE or DPDPE. The relationship of these lower molecular weight opioid-binding peptides to mu and delta receptors is not understood. Several possible explanations are presented.  相似文献   

3.
Durgan J  Michael N  Totty N  Parker PJ 《FEBS letters》2007,581(18):3377-3381
Protein kinase C delta (PKCdelta) is a Ser/Thr kinase which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. Here, we demonstrate that PKCdelta undergoes in vitro autophosphorylation at three sites within its V3 region (S299, S302, S304), each of which is unique to this PKC isoform and evolutionarily conserved. We demonstrate that S299 and S304 can be phosphorylated in mammalian cells following phorbol ester stimulation and that S299-phosphorylated PKCdelta is localised to both the plasma and nuclear membranes. These data indicate that PKCdelta is phosphorylated upon activation and that phospho-S299 represents a useful marker of the activated enzyme.  相似文献   

4.
In previous work (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154), we showed that overlapping peptides, N20K (Asn(564)-Lys(583)) and E20K (Glu(574)-Lys(593)), from the catalytic domain of phospholipase C (PLC) beta2 block Gbetagamma-dependent activation of PLC beta2. The peptides could also be directly cross-linked to betagamma subunits with a heterobifunctional cross-linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate. Cross-linking of peptides to Gbeta(1) was inhibited by PLC beta2 but not by alpha(i1)(GDP), indicating that the peptide-binding site on beta(1) represents a binding site for PLC beta2 that does not overlap with the alpha(i1)-binding site. Here we identify the site of peptide cross-linking and thereby define a site for PLC beta2 interaction with beta subunits. Each of the 14 cysteine residues in beta(1) were altered to alanine. The ability of the PLC beta2-derived peptide to cross-link to each betagamma mutant was then analyzed to identify the reactive sulfhydryl moiety on the beta subunit required for the cross-linking reaction. We find that C25A was the only mutation that significantly affected peptide cross-linking. This indicates that the peptide is specifically binding to a region near cysteine 25 of beta(1) which is located in the amino-terminal coiled-coil region of beta(1) and identifies a PLC-binding site distinct from the alpha subunit interaction site.  相似文献   

5.
6.
Two new thermosensitive yeast mutants defective in retrieval of dilysine-tagged proteins from the Golgi back to the endoplasmic reticulum (ER) were characterized. While both ret2-1 and ret3-1 were defective for ER retrieval, only ret2-1 exhibited a defect in forward ER-to-Golgi transport at the non-permissive temperature. Coatomer (COPI) from both mutants could efficiently bind dilysine motifs in vitro. The corresponding RET2 and RET3 genes were cloned by complementation and found of encode the delta and zeta subunits of coatomer respectively. Both proteins show significant homology to clathrin adaptor subunits. These results emphasize the role of coatomer in retrieval of dilysine-tagged proteins back to the ER, and the similarity between clathrin and coatomer coats.  相似文献   

7.
Boltz KW  Frasch WD 《Biochemistry》2006,45(37):11190-11199
F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.  相似文献   

8.
The origin of reaction and substrate specificity and the control of activity by protein-protein interaction are investigated using the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. We have compared some spectroscopic and kinetic properties of the wild type beta subunit and five mutant forms of the beta subunit that have altered catalytic properties. These mutant enzymes, which were engineered by site-directed mutagenesis, have single amino acid replacements in either the active site or in the wall of a tunnel that extends from the active site of the alpha subunit to the active site of the beta subunit in the alpha 2 beta 2 complex. We find that the mutant alpha 2 beta 2 complexes have altered reaction and substrate specificity in beta-elimination and beta-replacement reactions with L-serine and with beta-chloro-L-alanine. Moreover, the mutant enzymes, unlike the wild type alpha 2 beta 2 complex, undergo irreversible substrate-induced inactivation. The mechanism of inactivation appears to be analogous to that first demonstrated by Metzler's group for inhibition of two other pyridoxal phosphate enzymes. Alkaline treatment of the inactivated enzyme yields apoenzyme and a previously described pyridoxal phosphate derivative. We demonstrate for the first time that enzymatic activity can be recovered by addition of pyridoxal phosphate following alkaline treatment. We conclude that the wild type and mutant alpha 2 beta 2 complexes differ in the way they process the amino acrylate intermediate. We suggest that the wild type beta subunit undergoes a conformational change upon association with the alpha subunit that alters the reaction specificity and that the mutant beta subunits do not undergo the same conformational change upon subunit association.  相似文献   

9.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The beta sliding clamp encircles DNA and tethers DNA polymerase III holoenzyme to the template for high processivity. The clamp loader, gamma complex (gamma 3 delta delta'chi psi), assembles beta around DNA in an ATP-fueled reaction. The delta subunit of the clamp loader opens the beta ring and is referred to as the wrench; ATP modulates contact between beta and delta among other functions. Crystal structures of delta.beta and the gamma 3 delta delta' minimal clamp loader make predictions of the clamp loader mechanism, which are tested in this report by mutagenesis. The delta wrench contacts beta at two sites. One site is at the beta dimer interface, where delta appears to distort the interface by via a steric clash between a helix on delta and a loop near the beta interface. The energy for this steric clash is thought to derive from the other site of interaction, in which delta binds to a hydrophobic pocket in beta. The current study demonstrates that rather than a simple steric clash with beta, delta specifically contacts beta at this site, but not through amino acid side chains, and thus is presumably mediated by peptide backbone atoms. The results also imply that the interaction of delta at the hydrophobic site on beta contributes to destabilization of the beta dimer interface rather than acting solely as a grip of delta on beta. Within the gamma complex, delta' is proposed to prevent delta from binding to beta in the absence of ATP. This report demonstrates that one or more gamma subunits also contribute to this role. The results also indicate that delta' acts as a backboard upon which the gamma subunits push to attain the ATP induced change needed for the delta wrench to bind and open the beta ring.  相似文献   

11.
12.
H Tamir  A B Fawzi  A Tamir  T Evans  J K Northup 《Biochemistry》1991,30(16):3929-3936
Signal-transducing G-proteins are heterotrimers composed of GTP-binding alpha subunits in association with a tightly bound complex of beta and gamma subunits. While the alpha subunits are recognized as a family of diverse structures, beta and gamma subunits have also been found as heterogeneous isoforms. To investigate the diversity and tissue specificity of the beta gamma complexes, we have examined homogeneous oligomeric G-proteins from a variety of sources. The beta and gamma subunits isolated from the major-abundance G-proteins from bovine brain, bovine retina, rabbit liver, human placenta, and human platelets were purified and subjected to biochemical and immunological analysis. Protease mapping and immune recognition revealed an identical profile for each of the two distinctly migrating beta isoforms (beta 36 and beta 35) regardless of tissue or G-protein origin. Digestion with V8 protease revealed four distinct, clearly resolved terminal fragments for beta 36 and two for beta 35. Trypsin and chymotrypsin digestion yielded numerous bands, but again each form had a unique profile with no tissue specificity. Tryptic digestion was found to be conformationally specific with the most resistant structure being the native beta gamma complex. With increasing trypsin, the complex was digested but in a pattern distinct from that for denatured beta. In contrast to the two highly homologous beta structures, examination of this set of proteins revealed at least six distinct gamma peptides. Two unique gamma peptides were found in bovine retinal Gt and three gamma peptides in samples of bovine brain derived Go/Gi. Human placental and platelet Gi samples each contained a unique gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
As the properties of more and more isoforms of the molecules involved in G-protein-mediated signal transduction pathways are unravelled, surprising diversity and versatility are being revealed. The path from receptor to effector is not dictated exclusively by the alpha subunits of heterotrimetric G proteins. The nature of the beta lambda subunit complex probably controls interactions of G(alpha) with receptors. In addition, dissociation of G(alpha)-GTP from G(beta lambda)provides two signalling complexes, and these proteins regulate effectors independently or synergistically. Synergistic or conditional regulation of effectors by G(alpha) and G(beta lambda)can provide a molecular signal that records the association of independent events.  相似文献   

14.
Functionally distinct beta subunits in F1-adenosinetriphosphatase   总被引:1,自引:0,他引:1  
A method has been developed for the effective inactivation of bovine heart mitochondrial F1-ATPase (MF1) by partially dissociating its subunits with 3 M LiCl at 0 degree C and for the subsequent partial restoration of its ATPase activity by making the subunits reassociate upon the removal of LiCl by centrifugal gel filtration at room temperature through Sephadex G-25-80 which has been pre-equilibrated with buffer containing 3 mM ATP. When covalently labeled MF1 with approximately one 7-[4-nitro-2,1,3-benzoxadiazole] label/MF1 was subjected to this type of partial dissociation-reassociation treatment, its ATPase activity could be increased from 1.48 to 18.0 mumol of ATP min-1 mg-1 without losing the covalent label. The experimental results are incompatible with models for F1-ATPase with either 3 or 2 equivalent alternating catalytic sites, but are consistent with the model with 1 active catalytic site and 2 interacting regulatory sites.  相似文献   

15.
Ligand recombination to the alpha and beta subunits of human hemoglobin   总被引:1,自引:0,他引:1  
The rebinding of CO, O2, NO, methyl, ethyl, n-propyl, and n-butyl isocyanide to isolated alpha and beta chains and intact hemoglobin at pH 7, 20 degrees C was examined both during and after a 30-ns dye laser pulse. The resultant absorbance changes were analyzed in terms of a linear three-step reaction scheme: Hb + X in equilibrium with C in equilibrium with B in equilibrium with A or HbX, where A is the final bound state, and C and B are geminate states. Rate constants were assigned for each of the transitions in this mechanism using fitting procedures described previously for analyzing ligand rebinding to sperm whale myoglobin at room temperature (Gibson, Q. H., Olson, J. S., McKinnie, R. E., and Rohlfs, R. J. (1986) J. Biol. Chem. 261, 10228-10239). Five major conclusions were obtained. First, initial geminate recombination phases for the NO and O2 complexes of hemoglobin and its isolated subunits exhibit half-times equal to approximately 12 and approximately 440 ps, respectively. These values are in excellent agreement with more direct, picosecond measurements of the geminate recombination of HbNO (Cornelius, P. A., Hochstrasser, R. M., and Steele, A. W. (1983) J. Mol. Biol. 163, 119-128) and HbO2 (Friedman, J. M., Scott, T. W., Fisanick, G. J., Simon, S. R., Findsen, E. W., Ondrias, M. R., and MacDonald, V. W. (1985) Science 229, 187-229) following extremely short laser pulses. Second, the correspondence between our nanosecond measurements and the published picosecond data suggests strongly that the intrinsic photochemical yield of all ferrous, hexacoordinate heme complexes approaches one. Third, the major differences between the isolated alpha and beta chains involve the rate of ligand migration to the solvent, kC----X and the extent of recombination from the second geminate state, C, as measured by the ratio kC----B/kC----X. Fourth, for both isolated chains and intact hemoglobin, the rate and equilibrium constants for the formation of the initial O2 geminate state starting from ligand in the solvent (i.e. kX----B and KX----B) are 5-10 times greater than the corresponding parameters for the formation of the first CO geminate state. Fifth, the rate-limiting step for NO, O2, and isonitrile binding to hemoglobin and its isolated subunits is ligand migration up to the initial geminate state (i.e. kX----B). In the case of CO binding, both migration to state B and iron-ligand bond formation (kB----A) affect the overall, bimolecular association rate constant.  相似文献   

16.
1. Subunits alpha isolated from human haptoglobin were recombined with beta subunits of equine haptoglobin, and vice versa. Both hybrid proteins were separated on electrophoresis in polyacrylamide gel into four bands with mobilities corresponding to tetramers 2alpha.2beta, trimers 2alpha.beta, and dimers alpha.beta, in addition to free subunits beta. 2. The binding ability of haemoglobin and the antigenic specificity of tetramers depended on the origin of beta subunit. 3. Reduction of native and hybrid proteins with 2-mercaptoethanol led to gradual formation of alpha.beta, alpha, and beta; the components 2alpha.beta and 2alpha appeared in trace amounts.  相似文献   

17.
Cook TA  Ghomashchi F  Gelb MH  Florio SK  Beavo JA 《Biochemistry》2000,39(44):13516-13523
PDE6 (type 6 phosphodiesterase) from rod outer segments consists of two types of catalytic subunits, alpha and beta; two inhibitory gamma subunits; and one or more delta subunits found only on the soluble form of the enzyme. About 70% of the phosphodiesterase activity found in rod outer segments is membrane-bound, and is thought to be anchored to the membrane through C-terminal prenyl groups. The recombinant delta subunit has been shown to solubilize the membrane-bound form of the enzyme. This paper describes the site and mechanism of this interaction in more detail. In isolated rod outer segments, the delta subunit was found exclusively in the soluble fraction, and about 30% of it did not coimmunoprecipitate with the catalytic subunits. The delta subunit that was bound to the catalytic subunits dissociated slowly, with a half-life of about 3.5 h. To determine whether the site of this strong binding was the C-termini of the phosphodiesterase catalytic subunits, peptides corresponding to the C-terminal ends of the alpha and beta subunits were synthesized. Micromolar concentrations of these peptides blocked the phosphodiesterase/delta subunit interaction. Interestingly, this blockade only occurred if the peptides were both prenylated and methylated. These results suggested that a major site of interaction of the delta subunit is the methylated, prenylated C-terminus of the phosphodiesterase catalytic subunits. To determine whether the catalytic subunits of the full-length enzyme are methylated in situ when bound to the delta subunit, we labeled rod outer segments with a tritiated methyl donor. Soluble phosphodiesterase from these rod outer segments was more highly methylated (4.5 +/- 0.3-fold) than the membrane-bound phosphodiesterase, suggesting that the delta subunit bound preferentially to the methylated enzyme in the outer segment. Together these results suggest that the delta subunit/phosphodiesterase catalytic subunit interaction may be regulated by the C-terminal methylation of the catalytic subunits.  相似文献   

18.
The beta subunits of the two pituitary gonadotropins LH and FSH and of thyroid-stimulating hormone (TSH) were cloned from Australian lungfish (Neoceratodus forsteri) pituitary glands. These three glycoprotein hormone beta subunits possess the main characteristics common to their counterparts in other vertebrates. Taking advantage of the phylogenetic position of the lungfish, close to the root of tetrapods, a maximum parsimony tree was inferred from these new sequences and sequences from representatives of the diversity of vertebrates. The topology of the tree was imposed so that it reflected as closely as possible the real evolutionary history of the subunits. This tree was used to estimate the relative evolution rate of the three subunits in vertebrates. Cumulated amino acid substitutions from the basal subunit node (ancestral subunit sequence) to the species node were calculated and compared. It showed that a burst in evolutionary rate occurred for the LHbeta subunit in the tetrapod lineage sometime after the emergence of amphibians. The rate of evolution of the LHbeta subunit was particularly high throughout the radiation of mammals while FSH and TSHbeta subunits kept quite stable in this lineage. A burst in evolutionary rate was also observed for the FSHbeta subunit in the lineage leading to teleosts sometime after the emergence of chondrosteans and the dynamic of evolution was high throughout the radiation of teleosts. These results were consistent with data obtained from pairwise comparisons.  相似文献   

19.
20.
Meprins are zinc-endopeptidases of the astacin family, which are expressed as membrane-bound or secreted forms in renal and intestinal brush-border membranes of mouse, rat and man. There are two types of meprin subunits, alpha and beta, which form disulfide-bonded homo- and heterodimers; further oligomerization is mediated by non-covalent interactions. Both subunits are translated as proenzymes that have to be activated by removal of an N-terminal propeptide. In the gut, the most probable activator is trypsin. In addition, plasmin has been shown to activate the human alpha subunit in colorectal cancer tissue. In the present study we have overexpressed the human meprin alpha subunit and a His-tagged soluble tail-switch-mutant of meprin beta in Baculovirus-infected insect cells. The recombinant homo-oligomeric proteins were purified by gel filtration and affinity chromatography with yields of up to 10 mg/l cell culture medium and analyzed with regard to their activation mechanism. While both alpha and beta homo-oligomers are activated by trypsin, only meprin alpha homo-oligomers are processed to their mature form by plasmin. These results indicate a different accessibility of the propeptide in meprin homo-oligomers and suggest an explanation for the appearance of meprin hetero-oligomers consisting of active alpha, but latent beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号