首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically modified phosphorothioate oligodeoxynucleotides (ODNs) have become critical tools for research in the fields of gene expression and experimental therapeutics. Bioanalytical assays were developed that utilized fast anion-exchange high-performance liquid chromatography (HPLC) and capillary gel electrophoresis (CGE) for the determination of 20-mer ODNs in biological fluids (plasma and urine) and tissues. A 20 mer ODN in the antisense orientation directed against DNA methyltransferase (denoted as MT-AS) was studied as the model ODN. The anion-exchange HPLC method employed a short column packed with non-porous polymer support and a ternary gradient elution with 2 M lithium bromide containing 30% formamide. Analysis of the MT-AS is accomplished within 5 min with a detection limit of approximately 3 ng on-column at 267 nm. For plasma and urine, samples were diluted with Nonidet P-40 in 0.9% NaCl and directly injected onto the column, resulting in 100% recovery. For tissue homogenates, a protein kinase K digestion and phenol–chloroform extraction were used, with an average recovery of about 50%. Since the HPLC assay cannot provide one-base separation, biological samples were also processed by an anion-exchange solid-phase extraction and a CGE method to characterize MT-AS and its catabolites of 15–20-mer, species most relevant to biological activity. One base separation, under an electric field of 400 V/cm at room temperature, was achieved for a mixture of 15–20-mer with about 50 pg injected. Assay validation studies revealed that the combined HPLC–CGE methods are accurate, reproducible and specific for the determination of MT-AS and its catabolites in biological fluids and tissue homogenates, and can be used for the pharmacokinetic characterization of MT-AS.  相似文献   

2.
Fu J  Sun Y  Xia S  Dong L  Wang Q  Ou L  Shen X  Lv Z  Song H 《Nucleic acid therapeutics》2011,21(6):403-413
With ongoing efforts to develop oligonucleotide-based (ODN-based) therapeutics, there is a need for a sensitive, high-throughput method of quantification of ODN-based drugs in biological matrices. To overcome the insufficient sensitivity and time-consuming sample extraction procedures involved in conventional capillary gel electrophoresis (CGE) and high-performance liquid chromatography (HPLC), we developed a nucleic acid hybridization-based enzyme-linked bridging assay (ELBA), which shows significant advantages over CGE methods in evaluating ODN-based drugs in plasma and tissue: (1) It has higher sensitivity; (2) it involves easier sample extraction procedures; (3) it is suitable for many ODN-based drugs, even those with different secondary structures and modifications, including phosphorothioate oligonucleotide (PSODN), mixed backbones with 2'-O-Me (MBO), locked nucleic acid (LNA) modifications, and B- and C-type CpG sequences; and (4) it is highly selective, even during simultaneous quantification, with regard to intact ODNs and their 3'-metabolites. This universal design produces a rapid, sensitive, specific assay with minimal method development time. It is well suited to high-throughput analysis of various ODN-based drugs.  相似文献   

3.
Capillary gel electrophoresis using UV detection (CGE-UV) has been used to quantify oligodeoxynucleotides (ODN) in human plasma. Although the sensitivity of this method is adequate to detect antisense ODN, which are administered in daily doses up to 10 mg/kg, CGE-UV is not sensitive enough to detect the much lower quantities of ODN administered for other purposes, such as immune stimulation by CpG ODN. We have developed a very sensitive colorimetric hybridization assay that increases the sensitivity of detection by more than four logs compared with CGE-UV. The hybridization assay uses sequence-specific capture and detection ODN probes complementary to portions of the ODN sequence. Herein we provide a prototype for assay development and validation using a 24- mer immunostimulatory phosphorothioate ODN. Probes were locked nucleic acids (LNA), resulting in increased sensitivity and specificity. The linear range of the assay is 7.8-1000 pg/ml, with a 7.8 pg/ml lower limit of quantification (LLOQ) and a detection limit of 2.8 pg/ml. This translates to detection of 40 attamoles. Intraassay and interassay precision were < or =5.0% CV and < or =12.9% CV, respectively, for quality control samples. The assay is suitable for a variety of matrices, including monkey and rat plasma, allowing application to toxicokinetic samples. The methodology is highly specific, with the ability to distinguish almost all single-base mismatched ODN. The assay detects 100% of the parent as well as some metabolites up to N-4, which are known to be the primary metabolites forming in the first hours after in vivo administration and are physiologically active with in vitro assays.  相似文献   

4.
Unmethylated CpG dinucleotide motifs in bacterial DNA, as well as oligodeoxynucleotides (ODN) containing these motifs, are potent stimuli for many host immunological responses. These CpG motifs may enhance host responses to bacterial infection and are being examined as immune activators for therapeutic applications in cancer, allergy/asthma, and infectious diseases. However, little attention has been given to processes that down-modulate this response. The iron-binding protein lactoferrin is present at mucosal surfaces and at sites of infection. Since lactoferrin is known to bind DNA, we tested the hypothesis that lactoferrin will bind CpG-containing ODN and modulate their biological activity. Physiological concentrations of lactoferrin (regardless of iron content) rapidly bound CpG ODN. The related iron-binding protein transferrin lacked this capacity. ODN binding by lactoferrin did not require the presence of CpG motifs and was calcium independent. The process was inhibited by high salt, and the highly cationic N-terminal sequence of lactoferrin (lactoferricin B) was equivalent to lactoferrin in its ODN-binding ability, suggesting that ODN binding by lactoferrin occurs via charge-charge interaction. Heparin and bacterial LPS, known to bind to the lactoferricin component of lactoferrin, also inhibited ODN binding. Lactoferrin and lactoferricin B, but not transferrin, inhibited CpG ODN stimulation of CD86 expression in the human Ramos B cell line and decreased cellular uptake of ODN, a process required for CpG bioactivity. Lactoferrin binding of CpG-containing ODN may serve to modulate and terminate host response to these potent immunostimulatory molecules at mucosal surfaces and sites of bacterial infection.  相似文献   

5.
6.
7.
DNA sequences containing CpG motifs are recognized as immunomodulators in several species. Phosphodiester oligodeoxyribonucleotides (ODNs) representing sequences from the genome of porcine circovirus type 2 (PCV2) have been identified as potent inducers (ODN PCV2/5) or inhibitors (ODN PCV2/1) of alpha interferon (IFN-alpha) production by porcine peripheral blood mononuclear cells (poPBMCs) in vitro. In this study, the IFN-alpha-inducing or -inhibitory activities of specific phosphodiester ODNs were demonstrated to be dependent on their ability to form secondary structures. When a poly(G) sequence was added to a stimulatory self-complementary ODN, high levels of IFN-alpha were elicited, and the induction was not dependent on pretreatment with the transfecting agent Lipofectin. In addition, the IFN-alpha-inducing ODN required the presence of an intact CpG dinucleotide, whereas the inhibitory activity of ODN PCV2/1 was not affected by methylation or removal of the central CpG dinucleotide. Of particular significance, the IFN-alpha inhibition elicited by ODN PCV2/1 was only effective against induction stimulated by DNA control inducers and not RNA control inducers, indicating activity directed to TLR9 signaling. The PCV2 genome as a whole was demonstrated to induce IFN-alpha in cultures of poPBMCs, and the presence of immune modulatory sequences within the genome of PCV2 may, therefore, have implications with regard to the immune evasion mechanisms utilized by PCV2.  相似文献   

8.

Background and Aims

Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner.

Methodology

Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses.

Results

CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation.

Conclusions

Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.  相似文献   

9.
10.
Toll-like receptors (TLRs) expressed on cancer cells are closely associated with tumor development. In this study, we investigated the biological functions of the TLR9 ligand, CpG oligodeoxynucleotide (CpG ODN), on TLR9 expressed in the cytoplasm of hepatocellular carcinoma (HCC) cells. In vitro, human HCC cell lines were transfected with phosphorothioate-modified oligodeoxynucleotides TLR9 agonist OND M362 and its negative control ODN M362 ctrl, which inhibited the proliferation of HCC cells by inducing apoptosis without altering the cell cycle. Interestingly, ODN M362 and ODN M362 Ctrl displayed a similar proapoptotic effect on HCC, possibly related to phosphorothioate modification of the structure of CpG ODN. Although both of them resulted in the upregulation of the TLR9 receptor, their effect on HCC apoptosis was independent of TLR9. They also upregulated inflammatory cytokines, but did not activate the NF-κB signaling pathway. Finally, the activities of ODN M362 and ODN M362 Ctrl were demonstrated in nude mice inoculated with HCC cells. These findings suggest that the phosphorothioate-modified TLR9 agonist ODN M362, and its control, elicit antitumor activity in HCC cells and may serve as a novel therapeutic target for HCC therapy.  相似文献   

11.
Oligonucleotides containing unmethylated CpG motifs (cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN)) are potent immunostimulatory agents capable of enhancing the Ag-specific Th1 response when used as immune adjuvants. We evaluated the cellular mechanisms responsible for this effect. Development of a CTL response was enhanced when mice were immunized with peptide-pulsed dendritic cells (DCs) treated with CpG ODN. However, in vitro, CpG ODN had no direct effect on highly purified T cells. In vitro, CpG ODN treatment of peptide- or protein-pulsed DCs enhanced the ability of the DCs to activate class I-restricted T cells. The presence of helper T cells enhanced this effect, indicating that treatment with CpG ODN does not obviate the role of T cell help. The enhanced ability of CpG ODN-treated DCs to activate T cells was present but blunted when DCs derived from IL-12 knockout mice were used. Fixation of Ag-pulsed, CpG ODN-treated DCs limited their ability to activate T cells. In contrast, fixation had little effect on DC activation of T cells when DCs were not exposed to CpG ODN. This indicates that production of soluble factors by DCs stimulated with CpG ODN plays a particularly important role in their ability to activate class I-restricted T cells. We conclude that CpG ODN enhances the development of a cellular immune response by stimulating APCs such as DCs, to produce IL-12 and other soluble factors.  相似文献   

12.
The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.  相似文献   

13.
Cytosine–guanine (CpG) containing oligodeoxynucleotides (ODN) have significant clinical potential as immunotherapeutics. However, limitations exist due to their transient biological stability in vivo, lack of specificity for target cells, and poor cellular uptake. To address these issues, we prepared amine magnetic mesoporous silica nanoparticles (M-MSN-A) then further modified with polyethylene glycol (PEG) for use as CpG delivery vectors. The PEG modified M-MSN-A (M-MSN-P) had notable CpG ODN loading capacity, negligible cytotoxicity, and were easily internalized into cells where they released the loaded CpG into the cytoplasm. As a result, such complexes were effective in activating macrophages and inhibiting tumor cells when combined with chemotherapeutics in vitro. Furthermore, these complexes had excellent immuno-stimulating activity in vivo, compared to the free CpG therapeutics. We report here a highly effective MSNs-based delivery system with great potential as a therapeutic CpG formulation in cancer immunotherapy.  相似文献   

14.
Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs (CpG ODN) are potent adjuvants to protein antigens administered by parenteral or mucosal routes to BALB/c mice. To date, there have been no studies using combined parenteral/mucosal approaches with CpG DNA as adjuvant. In this study we evaluated different parenteral prime-mucosal boost and mucosal prime-parenteral boost strategies using hepatitis B surface antigen (HBsAg) alone or with different adjuvants: aluminum hydroxide (alum), cholera toxin (CT), CpG ODN. In addition, since CpG ODN has previously been shown to act synergistically with other adjuvants after parenteral or mucosal delivery, we also evaluated adjuvant combinations: alum+CpG ODN and CT+CpG ODN. The effects of adjuvant and administration strategy on systemic and mucosal humoral responses were measured, as well as cell-mediated immune responses (cytotoxic T lymphocyte activity). These results were compared to parenteral only or mucosal only strategies. Our findings demonstrate that parenteral immunization can prime for mucosal responses even when different lymph nodes were being targeted. HBsAg-specific immune responses (IgG in plasma, cytotoxic T lymphocytes) induced by parenteral prime could all be significantly enhanced by mucosal boosting and despite the fact that intramuscular immunization alone could not induce mucosal IgA, it could prime for a subsequent mucosal boost. In addition, the presence of adjuvant at time of boosting could influence the nature of subsequent immune responses (Th1 vs. Th2). Mice primed intranasally could have their systemic immune responses boosted with a parenteral administration and it was also possible to enhance mucosal responses induced by intranasal prime with an intramuscular boost.  相似文献   

15.
Oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotides within specific sequence contexts (CpG motifs) are detected, like bacterial or viral DNA, as a danger signal by the vertebrate immune system. CpG ODN synthesized with a nuclease-resistant phosphorothioate backbone have been shown to be potent Th1-directed adjuvants in mice, but these motifs have been relatively inactive on primate leukocytes in vitro. Moreover, in vitro assays that predict in vivo adjuvant activity for primates have not been reported. In the present study we tested a panel of CpG ODN for their in vitro and in vivo immune effects in mice and identified in vitro activation of B and NK cells as excellent predictors of in vivo adjuvant activity. Therefore, we tested >250 phosphorothioate ODN for their capacity to stimulate proliferation and CD86 expression of human B cells and to induce lytic activity and CD69 expression of human NK cells. These studies revealed that the sequence, number, and spacing of individual CpG motifs contribute to the immunostimulatory activity of a CpG phosphorothioate ODN. An ODN with a TpC dinucleotide at the 5' end followed by three 6 mer CpG motifs (5'-GTCGTT-3') separated by TpT dinucleotides consistently showed the highest activity for human, chimpanzee, and rhesus monkey leukocytes. Chimpanzees or monkeys vaccinated once against hepatitis B with this CpG ODN adjuvant developed 15 times higher anti-hepatitis B Ab titers than those receiving vaccine alone. In conclusion, we report an optimal human CpG motif for phosphorothioate ODN that is a candidate human vaccine adjuvant.  相似文献   

16.
DNA containing unmethylated CpG motifs is intrinsically immunostimulatory, inducing the production of a variety of cytokines and chemokines by immune cells. The strong Th1 response triggered by CpG oligodeoxynucleotide (ODN) inhibits the development of Th2-mediated allergic asthma in mice. This work documents that CpG ODN-induced IL-12 production plays a critical role in this process, because intrapulmonary CpG ODN inhibits allergic inflammation in wild-type but not IL-12(-/-) mice. CpG ODN rapidly localized to alveolar macrophages (AM), thereby triggering the phosphorylation of p38 mitogen-activated protein kinase (MAP kinase). AM cultured with CpG but not control ODN up-regulated IL-12 p40 expression and release, and these effects were blocked by the highly specific p38 MAP kinase inhibitor SB202190. Intrapulmonary administration of this inhibitor blocked the ability of CpG ODN to produce IL-12 in the lungs and reversed the anti-inflammatory effects of CpG ODN on allergic lung inflammation. These findings indicate that IL-12 production by AM is stimulated by intrapulmonary CpG ODN administration through a p38 MAP kinase-dependent process, and IL-12 is a key cytokine that mediates CpG ODN-induced protection against allergic lung inflammation.  相似文献   

17.
BACKGROUND: Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory cytosine-guanine phosphate-linked dinucleotide (CpG) motifs are potent systemic and mucosal adjuvants in mice that have synergistic action with numerous other adjuvants, including alum and cholera toxin (CT). Herein, we evaluate CpG ODN with intranasal (IN) delivery of purified hepatitis B surface antigen (HBsAg), relative to and in combination with CT, Escherichia coli heat labile enterotoxin (LT), the B subunit of CT (CTB), and a nontoxic derivative of LT (LTK63). MATERIALS AND METHODS: BALB/c mice were immunized by IN administration of HBsAg, alone or combined with CT, LT, CTB, or LTK63, and/or CpG ODN, or non-CpG control ODN. In addition, the effect of low-or high-volume administration was assessed, in order to target upper respiratory or entire respiratory tract, respectively. HBsAg-specific systemic (immunoglobulins: IgG, IgG1, IgG2a in plasma) and mucosal (IgA in fecal, lung, vaginal, saliva, and gut samples) humoral responses, as well as cell-mediated immune responses including T-cell proliferation and cytokines (interleukins: IL-4, IL-5; interferon: IFN-gamma) were evaluated. RESULTS: CpG ODN, CT, and LT augmented anti-HBs titers equally, and more so than did CTB or LTK63. CpG ODN acted synergistically with CT and LT, but not CTB or LTK63 to enhance anti-HBs titers. Nevertheless, CpG ODN induced a more Th1-like response for all combinations, compared with the same formulation without CpG. Strength of induced systemic and mucosal immune responses was better with IN delivery of a large volume. A small volume required multiple administrations and higher doses of antigen and adjuvant for equal results. This suggests that delivery of antigen to the lung and/or diges-tive system is superior to delivery to the nasal cavity. CONCLUSIONS: Our results suggest that the synergy between CpG ODN and native toxins (CT, LT) may depend on their enzymatic activity and that the lack of synergy with nontoxic derivatives (LTB, LTK63) arises, since they do not have enzymatic activity. Because both CT and LT are too toxic for use in humans, it is possible that CpG ODN may be combined with bacterial toxin mutants that retain some enzymatic activity to optimize immune augmentation.  相似文献   

18.
Immunization with dendritic cells (DCs) using various Ag-loading approaches has shown promising results in tumor-specific immunotherapy and immunoprevention. Fused cells (FCs) that are generated from DCs and tumor cells are one of effective cancer vaccines because both known and unknown tumor Ags are presented on the FCs and recognized by T cells. In this study, we attempted to augment antitumor immunity by the combination of DC-tumor FC vaccination with immunostimulatory oligodeoxynucleotides containing CpG motif (CpG ODN). Murine DCs were fused with syngeneic tumor cells ex vivo using inactivated hemagglutinating virus of Japan (Sendai virus). Mice were intradermally (i.d.) immunized with FCs and/or CpG ODN. Coadministration of CpG ODN enhanced the phenotypical maturation of FCs and unfused DCs, and the production of Th1 cytokines, such as IFN-gamma and IL-12, leading to the induction of tumor-specific CTLs without falling into T cell anergy. In addition, immunization with FCs + CpG ODN provided significant protection against lethal s.c. tumor challenge and spontaneous lung metastasis compared with that with either FCs or CpG ODN alone. Furthermore, among mice that rejected tumor challenge, the mice immunized with FCs + CpG ODN, but not the mice immunized with FCs or CpG ODN alone, completely rejected tumor rechallenge, indicating that CpG ODN provided long-term maintenance of tumor-specific immunity induced by FCs. Thus, the combination of DC-tumor FCs and CpG ODN is an effective and feasible cancer vaccine to prevent the generation and recurrence of cancers.  相似文献   

19.
The immunogenicity and protective efficacy of a bovine herpesvirus 1 (BHV-1) subunit vaccine formulated with Emulsigen (Em) and a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN) was determined in cattle. A truncated, secreted version of BHV-1 glycoprotein D (tgD) formulated with Em and CpG ODN at concentrations of 25, 2.5, or 0.25 mg/dose produced a more balanced immune response, higher levels of virus neutralizing antibodies, and greater protection after BHV-1 challenge compared to tgD adjuvanted with either Em or CpG ODN alone. In contrast, tgD formulated with Em and either 25 mg of a non-CpG ODN or another immunostimulatory compound, dimethyl dioctadecyl ammonium bromide, induced similar immunity and protection compared to tgD formulated with Em alone, a finding which confirms the immunostimulatory effect of ODN to be CpG motif mediated. Our results demonstrate the ability of CpG ODN to induce a strong and balanced immune response in a target species.  相似文献   

20.
Unmethylated CpG sequences (CpG ODN) stimulate Toll-like receptor 9 (TLR9) to activate innate immunity. We made DNA duplexes from poly(dT)320 and CpG ODN with (dA)40 attached at the 3' end. Circular dichroism and gel electrophoresis indicated that the CpG parts turned outward from the duplex. When we changed the CpG ODN/poly(dT) molar ratio, the amount of IL-12 secreted from J774A.1 cells (murine macrophage-like) reached the maximum at the compositions with two to four CpG portions in one duplex, while the maximum loading was eight CpG ODNs per one poly(dT)320. When the residual free dT parts were hybridized with its control GpC ODN with (dA)40 tail or just (dA)40, the maximum disappeared and the secretion increased with increasing the CpG molar ratio. These results indicated that there is a particular DNA higher-order structure to activate TLR9 more efficiently than single CpG ODN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号