首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pandemic distribution of Wolbachia (alpha-proteobacteria) across arthropods is largely due to the ability of these maternally inherited endosymbionts to successfully shift hosts across species boundaries. Yet it remains unclear whether Wolbachia has preferential routes of transfer among species. Here, we examined populations of eight species of the North American funnel-web spider genus Agelenopsis to evaluate whether Wolbachia show evidence for host specificity and the relative contribution of horizontal vs. vertical transmission of strains within and among related host species. Wolbachia strains were characterized by multilocus sequence typing (MLST) and Wolbachia surface protein (WSP) sequences, and analysed in relation to host phylogeny, mitochondrial diversity and geographical range. Results indicate that at least three sets of divergent Wolbachia strains invaded the genus Agelenopsis. After each invasion, the Wolbachia strains preferentially shuffled across species of this host genus by horizontal transfer rather than cospeciation. Decoupling of Wolbachia and host mitochondrial haplotype (mitotypes) evolutionary histories within single species reveals an extensive contribution of horizontal transfer also in the rapid dispersal of Wolbachia among conspecific host populations. These findings provide some of the strongest evidence to support the association of related Wolbachia strains with related hosts by means of both vertical and horizontal strain transmission. Similar analyses across a broader range of invertebrate taxa are needed, using sensitive methods for strain typing such as MLST, to determine if this pattern of Wolbachia dispersal is peculiar to Agelenopsis (or spiders), or is in fact a general pattern in arthropods.  相似文献   

2.
Life-history variation was investigated using crosses within and among the laboratory-bred descendants of six geographic samples of the large milkweed bug, Oncopeltus fasciatus. These samples spanned the species' range, from permanent (year-round) populations on tropical islands to seasonal middle-latitude populations found in temperate North America. The seasonal populations must be refounded each year by colonists from more southern populations. Marked differences in life-history traits (particularly in age at first reproduction, clutch size, and rate of egg production) were observed among the six population samples, with tropical-island and west-coast populations being the most distinct. In the eastern and central United States, there was a marked north-south difference in life history. Crossing experiments demonstrated a genetic basis for these differences. F1 and F2 hybrids from crosses between continental populations tended to have intermediate phenotypes. The similarity of the seasonal middle-latitude populations' life histories and the consistency of the distribution of life-history characteristics among populations (across years) may indicate that the north-south difference in life history is due to selection on these traits during the annual northward movement or that migrants represent a distinct genetic form of this species.  相似文献   

3.
S.J. McCauley 《水生昆虫》2013,35(3-4):195-204
Morphology is an important determinant of flight performance and can shape species’ dispersal behaviour. This study contrasted the morphology of flight-related structures in dragonfly species with different dispersal behaviours to gain insights into the relationship between morphology and dispersal behaviour. Specifically, wing size, wing shape and thorax size were compared in three co-occurring species from different clades within the genus Libellula (Odonata: Anisoptera: Libellulidae) to assess how these morphological traits are related to differences in dispersal behaviour and to how broadly their larvae occur across a habitat gradient. Two species had broad larval habitat distributions as well as high rates and distances of dispersal. These two species had relatively larger wings and thoraces than the third species, which was found only in permanent lakes and had limited dispersal. The hind-wings of more dispersive species also had lower aspect ratios and a relatively wider basal portion of the wing than the less dispersive species. Broad hind-wings may facilitate the use of gliding flight and reduce the energetic costs of dispersal. Determining the morphological traits associated with alternative dispersal behaviours may be a useful tool to assess the differential dispersal capacities of species or populations.  相似文献   

4.
The funnel-web spider genus Macrothele is the only representative of the mygalomorph family Hexathelidae not found in Australia or New Zealand. Its 26 species occur in Central Africa and the Oriental region. Two Macrothele species are found in Europe: M. cretica Kulczynski, 1903 from Crete, and M. calpeiana (Walckenaer, 1805) type species of the genus and the largest European spider, whose distribution extends across the south-eastern Iberian Peninsula, and in two localities of North Africa. Macrothele calpeiana is the only spider protected under European legislation. The fragmentation and destruction of the cork oak forest, with which M. calpeiana was thought to be closely associated, prompted the inclusion of this species in the Bern Convention. Some authors, however, have challenged this view and consider M. calpeiana to be neither a cork oak forest bioindicator nor an endangered species. By contrast, other observations suggest that the distribution of the species is extremely fragmented and that most local populations should be considered as threatened. In this paper, we examine aspects of the conservation status of M. calpeiana in the light of molecular phylogenetic analyses based on mitochondrial markers of sample specimens from major populations. Our data confirm the fragmented distribution of M. calpeiana and reveal high levels of genetic differentiation across its populations. Local population growth cannot be ruled out, though the lineage as a whole has apparently not undergone population growth. Lineage age estimates suggest that M. calpeiana colonized the Iberian Peninsula during the Messinian salinity crisis and that the current population fragmentation originates from the Pliocene and Pleistocene. We argue that the fragmentation and deep genetic divergence across populations, along with evolutionary singularity and endemicity in one of Europe’s main biodiversity hotspots, support the preservation of its legally protected status.  相似文献   

5.
Insect olfactory receptor (Or) genes are large, rapidly evolving gene families of considerable interest for evolutionary studies. They determine the responses of sensory neurons which mediate critical behaviours and ecological adaptations. We investigated the evolution across the genus Drosophila of a subfamily of Or genes largely responsible for the perception of ecologically relevant aliphatic esters; products of yeast fermentation and fruits. Odour responses were recorded from eight classes of olfactory receptor neurons known to express this Or subfamily in D. melanogaster and from homologous sensilla in seven other species. Despite the fact that these species have diverged over an estimated 40 million years, we find that odour specificity is largely maintained in seven of the eight species. In contrast, we observe extensive changes in most neurons of the outgroup species D. virilis, and in two neurons across the entire genus. Some neurons show small shifts in specificity, whilst some dramatic changes correlate with gene duplication or loss. An olfactory receptor neuron response similarity tree did not match an Or sequence similarity tree, but by aligning Or proteins of likely functional equivalence we identify residues that may be relevant for odour specificity. This will inform future structure–function studies of Drosophila Ors.  相似文献   

6.
The diversity and similarity of parasite communities is a result of many determinants widely considered in parasite ecology. In this study, the metazoan parasite communities of 15 chub populations (Leuciscus cephalus) were sampled across a wide geographical range. Three hypotheses of biogeographical gradients in species diversity were tested: (1) latitudinal gradient, (2) a 'favourable centre' versus 'local oasis' model, and (3) decay of similarity with distance. We found that the localities in marginal zones of chub distribution showed lower parasite species richness and diversity. A latitudinal gradient, with increasing abundance of larvae of Diplostomum species, was observed. There was a general trend for a negative relationship between relative prevalence or abundance and the distance from the locality with maximum prevalence or abundance for the majority of parasite species. However, statistical support for a 'favourable centre' model was found only for total abundance of Monogenea and for larvae of Diplostomum species. The phylogenetic relatedness of host populations inferred an important role when the 'favourable centre' model was tested. Testing of the hypothesis of 'decay of similarity with geographical distance' showed that phylogenetic distance was more important as a determinant of similarity in parasite communities than geographical distance between host populations.  相似文献   

7.
Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi   总被引:9,自引:0,他引:9  
Within the past two million years, more than 450 species of haplochromine cichlids have diverged from a single common ancestor in Lake Malawi. Several factors have been implicated in the diversification of this monophyletic clade, including changes in lake level and low levels of gene flow across limited geographic scales. The objectives of this study were to determine the effect of recent lake-level fluctuations on patterns of allelic diversity in the genus Metriaclima, to describe the patterns of population structure within this genus, and to identify barriers to migration. This was accomplished through an analysis of allele frequencies at four microsatellite loci. Twelve populations spanning four species within Metriaclima were surveyed. The effect of lake-level fluctuations can be seen in the reduced genetic diversity of the most recently colonized sites; however, genetic diversity is not depressed at the species level. Low levels of population structure exist among populations, yet some gene flow persists across long stretches of inhospitable habitat. No general barrier to migration was identified. The results of this study are interpreted with respect to several speciation models. Divergence via population bottlenecks is unlikely due to the large allelic diversity observed within each species. Genetic drift and microallopatric divergence are also rejected because some gene flow does occur between adjacent populations. However, the reduced levels of gene flow between populations does suggest that minor changes in the selective environment could cause the divergence of populations.  相似文献   

8.
Aim To investigate taxonomic homogenization and/or differentiation of insect and vascular plant assemblages across the Southern Ocean Islands (SOI), and how they differ with changing spatial extent and taxonomic resolution. Location Twenty‐two islands located across the Southern Ocean, further subdivided into five island biogeographical provinces. These islands are used because comprehensive data on both indigenous and non‐indigenous insect and plant species are available. Methods An existing database was updated, using newly published species records, identifying the indigenous and non‐indigenous insect and vascular plant species recorded for each island. Homogenization and differentiation were measured using Jaccard’s index (JI) of similarity for assemblages across all islands on a pairwise basis, and for island pairs within each of the biogeographical provinces. The effects of taxonomic resolution (species, genus, family) and distance on levels of homogenization or differentiation were examined. To explore further the patterns of similarity among islands for each of the taxa and groupings (indigenous and non‐indigenous), islands were clustered based on JI similarity matrices and using group averaging. Results Across the SOI, insect assemblages have become homogenized (0.7% increase in similarity at species level) while plant assemblages have become differentiated at genus and species levels. Homogenization was recorded only when pairwise distances among islands exceeded 3000 km for insect assemblages, but distances had to exceed 10,000 km for plant assemblages. Widely distributed non‐indigenous plant species tend to have wider distributions across the SOI than do their insect counterparts, and this is also true of the indigenous species. Main conclusions Insect assemblages across the SOI have become homogenized as a consequence of the establishment of non‐indigenous species, while plant assemblages have become more differentiated. The likely reason is that indigenous plant assemblages are more similar across the SOI than are insect assemblages, which show greater regionalization. Thus, although a suite of widespread, typically European, weedy, non‐indigenous plant species has established on many islands, the outcome has largely been differentiation. Because further introductions of insects and vascular plants are probable as climates warm across the region, the patterns documented here are likely to change through time.  相似文献   

9.
The ecological correlates of fitness costs of genetic similarity in free-living, large populations of organisms are poorly understood. Using a dataset of genetic similarity as reflected by band-sharing coefficients of minisatellites, we show that bird species with higher genetic similarity experience elevated hatching failure of eggs, increasing by a factor of six across 99 species. Island distributions and cooperative breeding systems in particular were associated with elevated genetic similarity. These findings provide comparative evidence of detrimental fitness consequences of high genetic similarity across a wide range of species, and help to identify ecological factors potentially associated with increased risk of extinction.  相似文献   

10.
The extent of sequence identity among clones derived from monomorphic and polymorphic AFLPTM polymorphism bands was quantified. A total of 79 fragments from a monomorphic band of 273 bp and 48 fragments from a polymorphic band of 159 bp, isolated from individuals belonging to different populations, varieties, and species of Echinacea, were cloned and sequenced. The monomorphic fragments exhibited above 90% sequence identity among clones within samples. Sequence identity within variety ranged from 82.78% to 94.87% and within species from 75.82% to 98.9% and was 57.97% in the genus. The polymorphic fragments exhibited much less sequence identity. In some instances, even two clones from the same fragment were different in their size and sequence. Within sample, clone sequence identity ranged from 100% to 51.57%, within variety from 33.33% to 100% in one variety, and from 23.66% to 45% within species and was as low as 1.25% within the genus. In addition, sequences of the same size were aligned to verify the nature of their sequence dissimilarity/similarity. Within each size group, identical sequences were found across species and varieties. In general, comigrating bands cannot be considered homologous. Thus, the use of AFLPTM band data for comparative studies is appropriate only if the results emanating from such analyses are considered as approximations and are interpreted as phenotypic but not genotypic.  相似文献   

11.
The disjunct geographic distribution of plethodontid salamanders of the genus Desmognathus provides excellent opportunities to test whether populations diverge in mate recognition systems so as to result in sexual incompatibility. Previous work has shown that sexual incompatibility may exist both among conspecific populations and between different species in this genus. Populations of the Santeetlah dusky salamander, Desmognathus santeetlah , are found at higher elevations in three mountain ranges in the southern Appalachian Mountains of eastern North America, where they are sympatric with congeneric species of similar body size. We report that statistically significant levels of sexual incompatibility exist among populations of D. santeetlah collected from across the species' range. Contrary to popular belief, but in accord with a growing body of empirical literature, aspects of mate recognition systems can diverge among conspecific populations of salamanders, resulting in incidental sexual incompatibility.  相似文献   

12.
Several lines of evidence suggest that recent long‐distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi‐Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (im and migrate ) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average FST = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long‐range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000–289 000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi‐Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.  相似文献   

13.
Leaf pocket resin sesquiterpenes have been quantitatively analysed in 11 species of the tropical genus Hymenaea. Variance-weighted similarity coefficients were calculated for all species and populational pairs, and chemical relationships among rainforest species and among all studied species and populations were visualized by dendrograms based on single-linkage clustering of similarity coefficients.  相似文献   

14.
Decrease in the species composition similarity of herbivore assemblages with increasing phylogenetic distance between host plants is a widespread pattern. Here we used data for caterpillars in the Brazilian Cerrado to investigate how the similarity in caterpillar species composition decreases as the taxonomic level and genetic distance (GD) of their host plants increases. In addition, we elucidate the plant taxonomic level that provides the greatest contribution to turnover in the caterpillar species composition among host taxa. Adult Lepidoptera were reared from caterpillars collected from 52 plants over 13 yr in the same area, with each host plant sampled for 1 yr. Most species were specialists, with 66 percent of genus specialists among the nonsingleton species. The similarity in caterpillar species composition across plant taxa decreased from host species to genera, and from host genera to orders. Above this level, the similarity was consistently low. The GD between plants explained 82 percent of the variation in the similarity of caterpillar species composition. The contribution of caterpillar species turnover among host orders from the same superorder and among host superorders from the same subclass explained 70 percent of the caterpillar species richness as a whole. Our results lend support to the view that most tropical caterpillars are host specialists. Our findings further indicate that the number of orders and superorders of plants provide the greatest contribution to the total caterpillar richness compared with all of the other host taxonomic levels combined. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

15.
SSR primers specific to Lolium perenne generated a total of 96 alleles and 124 genotypes within Festuca arundinacea and Lolium perenne accessions. Their highly transferability (100 %) across genera was evidenced. Six alleles specific to loci H01F02, H02C11 and K01A03 and only 5/96 common alleles between both species (60, 140, 144, 190 and 192) expressed the differentiation between species. Besides, based on the Wrights fixation indices, the genetic variation within each species was attributable to differences within populations with a significant deficiency of heterozygous. The unweighted pair group method with arithmetic averaging dendrogram based on the Nei’s distances and the principal coordinate analysis based on Jaccard coefficient similarity distinguished each genus independently of the geographical origin. However, typically continuous genetic diversity and a low level of gene flow (Nm: 0.29–2.47) expressed the relatively closely relationships of both genera and suggest a possible hybridization in nature.  相似文献   

16.
Aim The similarity between parasite assemblages should decrease with increasing geographic distance between them, increasing dissimilarity in environmental conditions, and/or increasing dissimilarity of the local host fauna, depending on the dispersal abilities of the parasites and the intimacy of their associations with the host. We tested for a decay in the similarity of gamasid mite assemblages parasitic on small mammals with increasing geographic, ‘environmental’ and ‘host faunal’ (= ‘host’) distances. Location We used data on assemblages of haematophagous gamasid mites (superfamily Dermanyssoidea) parasitic on small mammals (Insectivora, Lagomorpha and Rodentia) from 26 different regions of the northern Palaearctic. Methods Similarity in mite assemblages was investigated at the compound community level across all regions, and at the component community level, across populations of the same host species for each of 11 common host species. Similarity between pairs of mite communities was estimated using both the Jaccard and the Sorensen indices. Environmental distance was estimated as the dissimilarity between locations in a composite measure of climatic variables, and host faunal distance was simply taken as the reciprocal of indices of similarity between the composition of host faunas in different locations. Generalized Linear Models (GLM) and Akaike's Information Criterion were used to select the best model of decay in similarity as a function of geographic, ‘environmental’ and ‘host faunal’ distances. Results Overall, despite slight differences among host species, the similarity in mite assemblages decreased with both increasing ‘environmental’ distance and increasing ‘host faunal’ distance, but was generally unaffected by geographic distance between regions. The similarity of component communities of gamasid mites among host populations was determined mainly by similarity in the physical environment, whereas that of compound communities varied mainly with host‐species composition. Main conclusions Our results indicate that the general decay in community similarity with increasing geographic distances does not apply to assemblages of gamasid mites; it is possible that they can overcome great distances by means of passive dispersal (either by phoresy or wind‐borne), or more likely they occur wherever their hosts are found as a result of tight cospeciation in the past. Mite assemblages on small mammalian hosts seem to be affected mainly by local environmental conditions, and, to a much lesser extent, by the species composition of local host communities.  相似文献   

17.
The abundance and diversity of parasites vary among different populations of host species. In some host-parasite associations, much of the variation seems to depend on the identity of the host species, whereas in other cases it is better explained by local environmental conditions. The few parasite taxa investigated to date make it difficult to discern any general pattern governing large-scale variation in abundance or diversity. Here, we test whether the abundance and diversity of gamasid mites parasitic on small mammals across different regions of the Palaearctic are determined mainly by host identity or by parameters of the abiotic environment. Using data from 42 host species from 26 distinct regions, we found that mite abundances on different populations of the same host species were more similar to each other than expected by chance, and varied significantly among host species, with half of the variance among samples explained by differences between host species. A similar but less pronounced pattern was observed for mite diversity, measured both as species richness and as the taxonomic distinctness of mite species within an assemblage. Strong environmental effects were also observed, with local temperature and precipitation correlating with mite abundance and species richness, respectively, across populations of the same host species, for many of the host species examined. These results are compared to those obtained for other groups of parasites, notably fleas, and discussed in light of attempts to find general rules governing the geographical variation in the abundance and diversity of parasite assemblages.  相似文献   

18.
Five species (A. escallonioides Schltdl. & Cham., A. hirtella Lundell, A. elliptica Thunb., A. sieboldii Miq., and A. wallichii A.DC.) from three subgenera in the genus Ardisia (Myrsinaceae) were examined for self-compatibility, agamospermy, and autogamy using hand-pollination and pollinator-exclusion experiments on both garden plants and wild populations. All five species are self-compatible but not agamospermous. Four of the five species exhibited autogramy. Autogamy was strongly associated with stamen position, anther dehiscence type, protogyny, and inflorescence type. Because self-compatibility is widespread across different subgenera, it may be a general characteristic of the genus Ardisia. The potential impact of self-compatibility on the mating system and population genetic structure is discussed.  相似文献   

19.
Abstract  The genus Phytalmia (antlered flies, Diptera: Tephritidae) contains remarkable flies with elaborate male head projections known as antlers. The antlers are used in antagonistic intraspecific interactions between males competing to occupy oviposition sites. Phylogenetic relationships between the seven known species of Phytalmia were chosen to be investigated in order to determine the current monophyly of the genus and to assess the evolution of secondary sexual characters and associated behaviours, especially male antlers, fore-femoral, spines and stilting. A phylogenetic analysis of Phytalmia was conducted using two closely related species from the same tribe (Phytalmiini): Sessilina nigrilinea (Walker) and Diplochorda minor Malloch, and one species from a different tribe (Dacini): the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) as outgroups. A total of 1259 base pairs of mitochondrial DNA (COII and 16S) and 35 morphological characters were included in the analysis, using parsimony and maximum likelihood inference methods. A phylogenetic tree generated from combined data was used to infer the evolution of antler shapes and associated behaviours in the genus. The results of this paper support the monophyly of Phytalmia , with P. cervicornis Gerstaecker the sister group of the remaining species. The phylogeny suggests a general decrease in antler complexity over evolutionary time; however, the behavioural sequence of male flies becomes more complex over time, with steps (e.g. stilting) being added to the repertoire during antagonistic encounters. Finally, there are strong correlations between functionally constrained morphological and behavioural characters, therefore allowing the authors to make predications for species whose behaviours are unknown based on morphological attributes and the authors' hypothesised evolution of Phytalmia .  相似文献   

20.

Background

The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats.

Methodology/Principal Findings

We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general “3 clade” structure for the genus (A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism.

Conclusions/Significance

This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages are discovered, with more geographic sampling likely to lead to additional species diversity. These dispersal-limited taxa provide novel insight into the biogeography and Earth history processes of California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号