首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Epidermal growth factor (EGF)-stimulated proliferation of renal epithelial cells plays an important role in the recovery of kidney tubule epithelia following exposure to insult. Numerous studies have demonstrated that tyrosine phosphorylation of the focal adhesion protein paxillin mediates in part the effects of growth factors on cell growth, migration, and organization of the actin-based cytoskeleton. The experiments in this report were designed to determine the effect of EGF on paxillin phosphorylation in normal rat kidney (NRK) epithelial cells. Interestingly, treatment of NRK cells with EGF stimulated paxillin serine/threonine phosphorylation, which caused a reduction in the mobility of paxillin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The EGF-stimulated mobility shift of paxillin was independent of an intact cytoskeleton, phosphatidylinositol 3-kinase (PI 3-kinase) activation, protein kinase C (PKC) activation, and cellular adhesion. However, inhibitors of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase abrogated the EGF-stimulated change in paxillin mobility. In addition, the EGF-stimulated change in paxillin serine/threonine phosphorylation was not accompanied by a profound reorganization of the actin cytoskeleton. These results identify paxillin as a component EGF signaling in renal epithelial cells and implicate members of the MAP kinase pathway as critical regulators of paxillin serine/threonine phosphorylation.  相似文献   

2.
Platelet-derived growth factor (PDGF) induces the time and dose dependent serine/threonine phosphorylation of pp64, a nuclear protein in normal rat kidney (NRK) cells. pp64 is phosphorylated additionally on tyrosine in SSV-transformed NRK cells. To further characterize the regulation of phosphorylation of pp64, other mitogens and inhibitors were studied. 12-O-tetradecanoylphorbol-13-acetate (TPA) but not epidermal growth factor (EGF) or insulin induced the phosphorylation of nuclear pp64. Addition of the inhibitor H7 to TPA-treated NRK cells resulted in a striking further increase in phosphorylation of pp64 and, to a lesser extent, in NRK cells treated with PDGF and H7. When cells were treated with PDGF and H7, pp64 was recognized by anti-phosphotyrosine antisera. The increased phosphorylation induced by H7 was inhibited when forskolin was included. This loss of phosphorylation in pp64 with forskolin treatment paralleled a loss of immunoreactivity of pp64 to anti-phosphosphotyrosine. Complex and independent pathways thus appear to signal the growth factor dependent nuclear phosphorylation of pp64, involving phosphorylations both on serine/threonine and on tyrosine.  相似文献   

3.
In contrast to growth factor-stimulated tyrosine phosphorylation of p120, its relatively constitutive serine/threonine phosphorylation is not well understood. Here we examined the role of serine/threonine phosphorylation of p120 in cadherin function. Expression of cadherins in cadherin-null cells converted them to an epithelial phenotype, induced p120 phosphorylation and localized it to sites of cell contact. Detergent solubility and immunofluorescence confirmed that phosphorylated p120 was at the plasma membrane. E-cadherin constructs incapable of traveling to the plasma membrane did not induce serine/threonine phosphorylation of p120, nor did cadherins constructs incapable of binding p120. However, an E-cadherin cytoplasmic domain construct artificially targeted to the plasma membrane did induce serine/threonine phosphorylation of p120, suggesting phosphorylation occurs independently of signals from cadherin dimerization and trafficking through the ER/Golgi. Solubility assays following calcium switch showed that p120 isoform 3A was more effective at stabilizing E-cadherin at the plasma membrane relative to isoform 4A. Since the major phosphorylation domain of p120 is included in isoform 3A but not 4A, we tested p120 mutated in the known phosphorylation sites in this domain and found that it was even less effective at stabilizing E-cadherin. These data suggest that serine/threonine phosphorylation of p120 influences the dynamics of E-cadherin in junctions.  相似文献   

4.
We have examined the phosphorylation of the serine threonine kinase, the product of c-raf proto-oncogene in response to insulin or platelet-derived growth factor in intact cells. Both insulin and platelet-derived growth factor stimulated phosphorylation of the c-raf protein about 2- to 3-fold. The phosphorylation occurred exclusively on serine and threonine residues; phosphotyrosine was not detected. In immune-complex kinase assays, treatment with insulin, and platelet-derived growth factor increased autophosphorylation of the c-raf kinase, suggesting activation of its kinase activity. To investigate whether the phosphorylation of the c-raf protein in intact cells results from an autophosphorylation event or from the phosphorylation by other cellular kinase(s), we replaced lysine 375 in the putative ATP-binding domain of the c-raf protein with alanine using oligonucleotide site-directed mutagenesis and expressed the mutated protein in NIH3T3 cells. The substitution resulted in the inactivation of the serine/threonine-specific autophosphorylation in immune-complex kinase assays. In intact cells, however, although phosphorylation of the mutant protein in response to insulin and platelet-derived growth factor occurred to a lesser extent than that of the wild-type protein, the phosphopeptide maps were indistinguishable. These results suggest that serine threonine phosphorylation might be responsible for the activation of c-raf kinase upon treatment of cells with insulin and platelet-derived growth factor, and most of the phosphate associated with the c-raf protein results from its phosphorylation by as yet uncharacterized cellular serine/threonine kinase(s).  相似文献   

5.
The interplay between serine/threonine and tyrosine phosphorylation was studied in human neutrophils. The direct effects of calyculin and okadaic acid, potent inhibitors of PP1 and PP2A serine/threonine phosphatases, on the patterns of neutrophil phosphorylation, and their effects on the responses of neutrophils to CD32 cross-linking were monitored. After a 2-min incubation with 10-6 M calyculin, a transient tyrosine phosphorylation of a subset of proteins, among which Cbl and Syk, was observed. After a longer incubation (>5 min) with calyculin, concomitant with an accumulation of serine and threonine phosphorylation, neutrophil responses to CD32 cross-linking were selectively altered. Tyrosine phosphorylation of Cbl in response to CD32 cross-linking was inhibited by calyculin, and this inhibition was linked with a slower electrophoretic mobility of Cbl as a consequence of its phosphorylation on serine/threonine residues. However, tyrosine phosphorylation of Syk and of the receptor itself were not affected. Furthermore, the mobilization of intracellular calcium stimulated by CD32 cross-linking was totally abrogated by calyculin. Finally, the stimulation of superoxide production observed in response to CD32 cross-linking was enhanced in calyculin-treated cells. These results suggest that serine/threonine phosphorylation events regulate the signaling pathways activated by CD32 cross-linking in neutrophils and identify a novel mechanism of modulation of the functional responsiveness of human neutrophils to CD32 cross-linking.  相似文献   

6.
The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and constitutively phosphorylated on serine and weakly on threonine residues. In this study, we have mapped constitutive phosphorylation sites for casein kinases, protein kinase C, and an unidentified kinase on the KIR cytoplasmic domain. Three of these phosphorylation sites are highly conserved in human inhibitory KIR. Functional studies of the wild-type receptor and serine/threonine mutants indicated that phosphorylation of Ser(394) by protein kinase C slightly suppresses KIR3DL1 inhibitory function, and reduces receptor internalization and turnover. Our results provide evidence that serine/threonine phosphorylation is an important regulatory mechanism of KIR function.  相似文献   

7.
The cytoplasmic domains of integrins play a key role in a variety of integrin-mediated events including adhesion, migration, and signaling. The molecular mechanisms that enhance integrin function are still incompletely understood. Because protein kinases are known to be involved in the signaling and the activation of integrins, the role of phosphorylation has been studied by several groups. The beta(2) leukocyte integrin subunit has previously been shown to become phosphorylated in leukocytes on cytoplasmic serine and functionally important threonine residues. We have now mapped the phosphorylated threonine residues in activated T cells. After phorbol ester stimulation, all three threonine residues (758-760) of the threonine triplet became phosphorylated but only two at a time. CD3 stimulation leads to a strong threonine phosphorylation of the beta(2) integrin, but differed from phorbol ester activation in that phosphorylation occurred only on threonine 758. The other leukocyte-specific integrin, beta(7), has also been shown to need the cytoplasmic domain and leukocyte-specific signal transduction elements for integrin activation. Cell activation with phorbol ester, and interestingly, through the TCR-CD3 complex, caused beta(7) integrin binding to VCAM-1. Additionally, cell activation led to increased phosphorylation of the beta(7) subunit, and phosphoamino acid analysis revealed that threonine residues became phosphorylated after cell activation. Sequence analysis by manual radiosequencing by Edman degradation established that threonine phosphorylation occurred in the same threonine triplet as in beta(2) phosphorylation.  相似文献   

8.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

9.
10.
The low density lipoprotein receptor-related protein (LRP) is a large receptor that participates in endocytosis, signaling pathways, and phagocytosis of necrotic cells. Mechanisms that direct LRP to function in these distinct pathways likely involve its association with distinct cytoplasmic adaptor proteins. We tested the hypothesis that the association of various adaptor proteins with the LRP cytoplasmic domain is modulated by its phosphorylation state. Phosphoamino acid analysis of metabolically labeled LRP revealed that this receptor is phosphorylated at serine, threonine, and tyrosine residues within its cytoplasmic domain, whereas inhibitor studies identified protein kinase Calpha (PKCalpha) as a kinase capable of phosphorylating LRP. Mutational analysis identified critical threonine and serine residues within the LRP cytoplasmic domain that are necessary for phosphorylation mediated by PKCalpha. Mutating these threonine and serine residues to alanines generated a receptor that was not phosphorylated and that was internalized more rapidly than wild-type LRP, revealing that phosphorylation reduces the association of LRP with adaptor molecules of the endocytic machinery. In contrast, serine and threonine phosphorylation was necessary for the interaction of LRP with Shc, an adaptor protein that participates in signaling events. Furthermore, serine and threonine phosphorylation increased the interaction of LRP with other adaptor proteins such as Dab-1 and CED-6/GULP. These results indicate that phosphorylation of LRP by PKCalpha modulates the endocytic and signaling function of LRP by modifying its association with adaptor proteins.  相似文献   

11.
H S Earp  R A Rubin  K S Austin  R C Dy 《FEBS letters》1983,161(2):180-184
A membrane fraction from Raji human lymphoblastoid cells exhibited tyrosine-specific kinase activity. Vanadate increased tyrosine phosphorylation up to 5-fold; serine and threonine phosphorylation were unchanged. The stimulation was detectable within 15 s at 0 degrees C and at concentrations of vanadate (0.3 and 1.0 microM) present in normal tissues and blood. The tyrosine phosphorylation of two substrates, M1 61 000 and 55 000, was dependent upon vanadate and incorporation into these substrates represented the majority of the vanadate-sensitive tyrosine phosphorylation.  相似文献   

12.
Immunoaffinity-purified insulin receptors were used to analyse and compare the serine/threonine sites phosphorylated on the insulin receptor in vitro (isolated receptor) with the insulin-stimulated phosphorylation in vivo (intact cells in culture). In vivo, insulin-stimulation resulted in the appearance of three phosphoserine-containing phosphopeptides and a distinct phosphothreonine peptide (threonine 1348). In vitro, similar phosphoserine peptides were observed but the phosphothreonine peptide was absent. These results indicate that multiple serine sites are phosphorylated in vivo and in vitro and that an additional protein kinase mediates insulin-stimulated insulin receptor threonine phosphorylation in vivo.  相似文献   

13.
14.
Chronic myelogenous leukaemia (CML) is induced by the Bcr-Abl fusion protein. Inhibition of Bcr-Abl by STI571 is widely used to treat CML patients. Unlike in most cancer types, the frequency of p53 mutations in CML is low. Here, we investigated the effect of STI571 treatment of CML cells on p53 regulation. Exposure of CML cells, including established cell lines and freshly isolated cells from patients, to STI571 reduced p53 protein levels, and severely impaired its accumulation in response to DNA damage. This may be explained by the status of p53 serine 20 phosphorylation. In non-stressed CML cells, serine 20 of p53 is constitutively phosphorylated by Chk1, and is inhibited by STI571. In response to DNA damage, however, this phosphorylation is mediated by Chk1 and Chk2, and is only partially inhibited by STI571. CML cells expressing wild-type p53 are more resistant to treatment with STI571, but moderately more sensitive to DNA damage, than CML cells lacking p53. An enhanced induction of apoptosis by STI571 and DNA damage is observed in CML cells bearing wild-type p53, but not in cells lacking functional p53. This implies that the status of p53 may affect the response of CML cells to this combined treatment.  相似文献   

15.
The phosphorylation of different amino acids in distinct regions of f1 histone was studied in highly synchronized Chinese hamster cell populations (line CHO). The purified, 32P-labeled f1 histone was bisected into NH2-terminal and COOH-terminal fragments with N-bromosuccinimide. Tryptic phosphopeptides from these fragments were resolved using sequential high voltage electrophoretic steps on paper. No phosphorylation was observed in early G1-arrested cells. Interphase phosphorylation began in late G1 in the COOH-terminal portion of the molecule on serine. This event continued throughout S phase and persisted into mitosis. However, in mitosis additional phosphorylation was observed in the COOH-terminal portion of the molecule on threonine, and for the only time in the CHO cell cycle the NH2-terminal portion of the molecule was also phosphorylated on both serine and threonine. The peptide studies thus predicted that a minimum of four sites (two serine and two threonine) were phosphorylated in the f1 histone of mitotic CHO cells. This was confirmed using electrophoresis in long polyacrylamide gels.  相似文献   

16.
The second messenger ceramide (N-alkylsphingosine) has been implicated in a host of cellular processes including growth arrest and apoptosis. Ceramide has been reported to have effects on both protein kinases and phosphatases and may constitute an important component of stress response in various tissues. We have examined in detail the relationship between ceramide signaling and the activation of an important signaling pathway, phosphatidylinositol (PI) 3-kinase and its downstream target, protein kinase B (PKB). PKB activation was observed following stimulation of cells with the cytokine granulocyte-macrophage colony-stimulating factor. Addition of cell-permeable ceramide analogs, C(2)- or C(6)-ceramide, caused a partial loss (50-60%) of PKB activation. This reduction was not a result of decreased PI(3,4,5)P(3) or PI(3,4)P(2) generation by PI 3-kinase. Two residues of PKB (threonine 308 and serine 473) require phosphorylation for maximal PKB activation. Serine 473 phosphorylation was consistently reduced by treatment with ceramide, whereas threonine 308 phosphorylation remained unaffected. In further experiments, ceramide appeared to accelerate serine 473 dephosphorylation, suggesting the activation of a phosphatase. Consistent with this, the reduction in serine 473 phosphorylation was inhibited by the phosphatase inhibitors okadaic acid and calyculin A. Surprisingly, threonine 308 phosphorylation was abolished in cells treated with these inhibitors, revealing a novel mechanism of regulation of threonine 308 phosphorylation. These results demonstrate that PI 3-kinase-dependent kinase 2-catalyzed phosphorylation of serine 473 is the principal target of a ceramide-activated phosphatase.  相似文献   

17.
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.  相似文献   

18.
The involvement of serine and threonine phosphorylation in human sperm capacitation was investigated. Anti-phosphoserine monoclonal antibody (mAb) recognized six protein bands in the 43-55-kDa, 94 +/- 2-kDa, 110-kDa, and 190-kDa molecular regions, in addition to a faint band each in the 18-kDa and 35-kDa regions. Anti-phosphothreonine mAb recognized protein bands in six similar regions, except that the 18-kDa, 35-kDa, and 94 +/- 2-kDa protein bands were sharper and thicker, and an additional band was observed in the 110-kDa molecular region. In the 43-55-kDa molecular region, there was a well-characterized glycoprotein, designated fertilization antigen, that showed a further increase in serine/threonine phosphorylation after exposure to solubilized human zona pellucida. In a cell-free in vitro kinase assay carried out on beads or in solution, four to eight proteins belonging to similar molecular regions, namely 20 +/- 2 kDa, 43-55 kDa, 94 +/- 2 kDa, and 110 +/- 10 kDa, as well as in 80 +/- 4 and 210 +/- 10 kDa regions, were phosphorylated at dual residues (serine/tyrosine and threonine/tyrosine). Capacitation increased the intensity of serine/threonine phosphorylation per sperm cell, increased the number of sperm cells that were phosphorylated, and induced a subcellular shift in the serine/threonine-specific fluorescence. These findings indicate that protein serine/threonine phosphorylation is involved and may have a physiological role in sperm capacitation.  相似文献   

19.
The protein kinase B (PKB)/Akt family of serine kinases is rapidly activated following agonist-induced stimulation of phosphoinositide 3-kinase (PI3K). To probe the molecular events important for the activation process, we employed two distinct models of posttranslational inducible activation and membrane recruitment. PKB induction requires phosphorylation of two critical residues, threonine 308 in the activation loop and serine 473 near the carboxyl terminus. Membrane localization of PKB was found to be a primary determinant of serine 473 phosphorylation. PI3K activity was equally important for promoting phosphorylation of serine 473, but this was separable from membrane localization. PDK1 phosphorylation of threonine 308 was primarily dependent upon prior serine 473 phosphorylation and, to a lesser extent, localization to the plasma membrane. Mutation of serine 473 to alanine or aspartic acid modulated the degree of threonine 308 phosphorylation in both models, while a point mutation in the substrate-binding region of PDK1 (L155E) rendered PDK1 incapable of phosphorylating PKB. Together, these results suggest a mechanism in which 3' phosphoinositide lipid-dependent translocation of PKB to the plasma membrane promotes serine 473 phosphorylation, which is, in turn, necessary for PDK1-mediated phosphorylation of threonine 308 and, consequentially, full PKB activation.  相似文献   

20.
Brannock MT  Weng K  Robinson PR 《Biochemistry》1999,38(12):3770-3777
Many recent reports have demonstrated that rhodopsin's carboxyl-terminal serine residues are the main targets for phosphorylation by rhodopsin kinase. Phosphorylation at the serines would therefore be expected to promote high-affinity arrestin binding. We have examined the roles of the carboxyl serine and threonine residues during arrestin-mediated deactivation of rhodopsin using an in vitro transducin activation assay. Mutations were introduced into a synthetic bovine rhodopsin gene and expressed in COS-7 cells. Individual serine and threonine residues were substituted with neutral amino acids. The ability of the mutants to act as substrates for rhodopsin kinase was analyzed. The effect of arrestin on the activities of the phosphorylated mutant rhodopsins was measured in a GTPgammaS binding assay involving purified bovine arrestin, rhodopsin kinase, and transducin. A rhodopsin mutant lacking the carboxyl serine and threonine residues was not phosphorylated by rhodopsin kinase, demonstrating that phosphorylation is restricted to the seven putative phosphorylation sites. A rhodopsin mutant possessing a single phosphorylatable serine at 338 demonstrated no phosphorylation-dependent quench by arrestin. These results suggest that singly phosphorylated rhodopsin is deactivated through a mechanism that does not involve arrestin. Analysis of additional mutants revealed that the presence of threonine in the carboxyl tail of rhodopsin provides for greater arrestin-mediated quench than does serine. These results suggest that phosphorylation site selection could serve as a mechanism to modulate the ability of arrestin to quench rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号