首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.

Background  

A large number of papers have been published on analysis of microarray data with particular emphasis on normalization of data, detection of differentially expressed genes, clustering of genes and regulatory network. On other hand there are only few studies on relation between expression level and composition of nucleotide/protein sequence, using expression data. There is a need to understand why particular genes/proteins express more in particular conditions. In this study, we analyze 3468 genes of Saccharomyces cerevisiae obtained from Holstege et al., (1998) to understand the relationship between expression level and amino acid composition.  相似文献   

2.

Background  

Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data.  相似文献   

3.

Background  

Normalization is a prerequisite for accurate real time PCR (qPCR) expression analysis and for the validation of microarray profiling data in microbial systems. The choice and use of reference genes that are stably expressed across samples, experimental conditions and designs is a key consideration for the accurate interpretation of gene expression data.  相似文献   

4.
MOTIVATION: We face the absence of optimized standards to guide normalization, comparative analysis, and interpretation of data sets. One aspect of this is that current methods of statistical analysis do not adequately utilize the information inherent in the large data sets generated in a microarray experiment and require a tradeoff between detection sensitivity and specificity. RESULTS: We present a multistep procedure for analysis of mRNA expression data obtained from cDNA array methods. To identify and classify differentially expressed genes, results from standard paired t-test of normalized data are compared with those from a novel method, denoted an associative analysis. This method associates experimental gene expressions presented as residuals in regression analysis against control averaged expressions to a common standard-the family of similarly computed residuals for low variability genes derived from control experiments. By associating changes in expression of a given gene to a large family of equally expressed genes of the control group, this method utilizes the large data sets inherent in microarray experiments to increase both specificity and sensitivity. The overall procedure is illustrated by tabulation of genes whose expression differs significantly between Snell dwarf mice (dw/dw) and their phenotypically normal littermates (dw/+, +/+). Of the 2,352 genes examined only 450-500 were expressed above the background levels observed in nonexpressed genes and of these 120 were established as differentially expressed in dwarf mice at a significance level that excludes appearance of false positive determinations.  相似文献   

5.

Background  

Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type.  相似文献   

6.

Background  

A major goal of the analysis of high-dimensional RNA expression data from tumor tissue is to identify prognostic signatures for discriminating patient subgroups. For this purpose genome-wide identification of bimodally expressed genes from gene array data is relevant because distinguishability of high and low expression groups is easier compared to genes with unimodal expression distributions.  相似文献   

7.
8.

Background  

DNA microarrays are used to investigate differences in gene expression between two or more classes of samples. Most currently used approaches compare mean expression levels between classes and are not geared to find genes whose expression is significantly different in only a subset of samples in a class. However, biological variability can lead to situations where key genes are differentially expressed in only a subset of samples. To facilitate the identification of such genes, a new method is reported.  相似文献   

9.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

10.
11.

Background  

The determination of the right model structure describing a gene regulation network and the identification of its parameters are major goals in systems biology. The task is often hampered by the lack of relevant experimental data with sufficiently low noise level, but the subset of genes whose concentration levels exhibit an oscillatory behavior in time can readily be analyzed on the basis of their Fourier spectrum, known to turn complex signals into few relatively noise-free parameters. Such genes therefore offer opportunities of understanding gene regulation quantitatively.  相似文献   

12.
13.
14.
15.
16.
17.
18.

Background  

TEAD1 (TEA domain family member 1) is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown.  相似文献   

19.
20.

Background  

The binding of regulatory proteins to their specific DNA targets determines the accurate expression of the neighboring genes. The in silico prediction of new binding sites in completely sequenced genomes is a key aspect in the deeper understanding of gene regulatory networks. Several algorithms have been described to discriminate against false-positives in the prediction of new binding targets; however none of them has been implemented so far to assist the detection of binding sites at the genomic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号