首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nifA gene is an important regulatory gene and its product, NifA protein, regulates the expression of many nif genes involved in the nitrogen fixation process. We introduced multiple copies of the constitutively expressed Sinorhizobium meliloti (Sm) or Enterobacter cloacae (Ec) nifA gene into both the nifA mutant strain SmY and the wild-type strain Sm1021. Root nodules produced by SmY containing a constitutively expressed Sm nifA gene were capable of fixing nitrogen, while nodules produced by SmY containing the EC nifA gene remained unable to fix nitrogen, as is the case for SmY itself. However, transfer of an additional Sm nifA gene into Sm1021 improved the nitrogen-fixing efficiency of root nodules to a greater extent than that observed upon transfer of the EC nifA gene into Sm1021. Comparative analysis of amino acid sequences between Sm NifA and EC NifA showed that the N-terminal domain was the least similar, but this domain is indispensable for complementation of the Fix-phenotype of SmY by Sm Ni  相似文献   

2.
3.
The ability of the symbiotrophic rhizobium Sinorhizobium meliloti P221 to produce cells having all the properties of resting forms (RFs) during the development cycles of the culture or after addition of the threshold concentrations of anabiosis autoinducers was demonstrated. The numbers, properties, and ultra-structure of S. meliloti resting forms depended on the conditions of growth and poststationary-phase incubation. In the four-month poststationary-phase, cultures grown in media deficient in some nutrient elements and energy sources (nitrogen, phosphorus, or oxygen), numerous cells (24–76% of the number of CFUs in the stationary-phase cultures) exhibiting a high degree of heat resistance and reversibly inhibited metabolic activity (the absence of endogenous respiration) were detected. According to their ultrastructure, all the resting forms detected in starving cultures were divided into three groups: (1) cystlike resting cells (CRCs) with thick cell envelopes and compacted nucleoids, (2) CRCs containing numerous (up to three-quarters of their volumes) polyhydroxyalkanoate inclusions, and (3) RFs similar to Azotobacter cysts. The resting forms obtained in the culture grown at high concentrations (5 × 10−5 M) of C12-AHB, a chemical analogue of microbial anabiosis autoregulators, were incapable of endogenous respiration and retained the colony-forming ability. The CFU number after plating of these resting forms was twice as high as in the control culture; the heat resistance of these cells (55°C, 10 min) was an order of magnitude higher. The bacterial cells obtained from the resting forms either had a mixed (Swa+Gri+) type of motility in semisolid agar, typical of the dominant phenotype of the parent cells, or switched to the Gri+ type. Emergence of different motility phenotypes depended on the conditions of RF formation. More severe stress conditions of RF formation induced the emergence of the Gri+ type of cell motility. The results obtained can be used for development of a new generation of bacterial preparations based on bacterial CRCs which are able to preserve their viability for a long time and are highly resistant to stress impacts.  相似文献   

4.
High activity (>60 munit/mg protein) of 5-deoxyadenosylcobalamin-dependent methylmalonyl-CoA mutase (EC 5.4.99.2) was constantly found during growth of a strain of the root-nodule-forming bacterium Sinorhizobium meliloti harboring an extra plasmid-encoded copy of the methylmalonyl-CoA-mutase-encoding bhbA gene. The enzyme was purified to homogeneity and characterized. The purified enzyme was found to be a colorless apo-form. The apparent molecular weight of the enzyme was calculated to be 165,000±5,000 by Superdex 200 HR gel filtration. SDS-PAGE of the purified enzyme resolved one protein band with an apparent molecular mass of 80.0±2.0 kDa, indicating that the S. meliloti enzyme is composed of two identical subunits. The NH2-terminal sequence was identical to that predicted from the bhbA nucleotide sequence. Monovalent cations were required for enzyme activity.Abbreviations AdoCbl 5-Deoxyadenosylcobalamin - KPB Potassium phosphate buffer - MCM Methylmalonyl-CoA mutase - PVDF Polyvinylidene difluoride  相似文献   

5.
A metabolite analysis of the soil bacterium Sinorhizobium meliloti was established as a first step towards a better understanding of the symbiosis with its host plant Medicago truncatula. A crucial step was the development of fast harvesting and extraction methods for the bacterial metabolites because of rapid changes in their composition. S. meliloti 1021 cell cultures grown in minimal medium were harvested by centrifugation, filtration or immediate freezing in liquid nitrogen followed by a lyophilisation step. Bacteria were lysed mechanically in methanol and hydrophilic compounds were analysed after methoxymation and silylisation via GC-MS. The different compounds were identified by comparison with the NIST 98 database and available standards. From about 200 peaks in each chromatogram 65 compounds have been identified so far. A comparison of the different extraction methods giving the metabolite composition revealed clear changes in several amino acids and amino acid precursor pools. A principal component analysis (PCA) was able to distinguish S. meliloti cells grown on different carbon sources based on their metabolite profile. A comparison of the metabolite composition of a S. meliloti leucine auxotrophic mutant with the wild type revealed a marked accumulation of 2-isopropylmalate in the mutant. Interestingly, the accumulated metabolite is not the direct substrate of the mutated enzyme, 3-isopropylmalate dehydrogenase, but the substrate of isopropylmalate isomerase, which acts one step further upstream in the biosynthetic pathway of leucine. This finding further emphasises the importance of integrating metabolic data into post-genomic research.  相似文献   

6.
The effect of phenanthrene, a polycyclic aromatic hydrocarbon (PAH) at concentrations of 0, 10, and 100 mg/kg and the bacterium Sinorhizobium meliloti P221 on root exudation of Sorghum bicolor L. Moench was studied in laboratory vegetative experiments. Inoculation of the bacterium promoted plant resistance to the pollutant stress and increased their acclimation rate and biomass formation. The ability of this microorganism to produce a phytohormone, indolyl-3-acetic acid, and to degrade phenanthrene, resulted in morphological changes of the plant root system and in the changed intensity of root exudation. In root exudates of sorghum, enzyme activities towards the metabolites formed during microbial degradation of PAH were revealed, which is indicative of a direct involvement of plants in PAH degradation in the rhizosphere as well as of the coupled plant-microbial metabolism in the course of xenobiotic degradation in the root zone. In phenanthrene-contaminated soil, sorghum was found to support selectively the development of the S. meliloti P221 population.  相似文献   

7.
Two plant growth promoting rhizobacteria––Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 were studied for integrated nutrient management to obtain improved yield of Brassica juncea. Low concentrations of urea and diammonium phosphate (DAP) stimulated the growth of both S. meliloti RMP1 and P. aeruginosa GRC2. 1 M of urea and 0.35 M of DAP was found lethal for RMP1, while 1.3 M and 0.37 M concentrations of urea and DAP proved to be toxic for GRC2. Lc50 was observed as 0.49 M of urea and 0.15 M of DAP for RMP1, and 0.66 M urea and 0.18 M of DAP for GRC2. Urea and DAP adaptive variants of RMP1 and GRC2 was isolated. Adaptive bacterial variants had better growth rates at sub-lethal (Lc50) concentrations of urea and DAP as compared to non-adaptive variants. They also retained plant growth promoting attributes similar to non adaptive variants. GRC2 and RMP1 did not affect the growth of each other and were chemotactically active for DAP, urea as well as root exudates of B. juncea. Both the isolates colonized well in the rhizosphere of B. juncea, as their populations were recorded ≈5 log10 cfu g−1 after 120 days. Interestingly, the colonization ability was found even better when both strains were co-inoculated, as their population was recorded in the range of ≈6 log10 cfu g−1 after 120 days. In field trials, application of RMP1 and GRC2 resulted in significant increase in biomass and yield of B. juncea as compared to control. However, yield was better with application of half dose and full dose of recommended fertilizers. Interestingly, the biomass as well as yield improved further when both isolates were applied together along with half dose of recommended fertilizers.  相似文献   

8.
Sinorhizobium meliloti natural populations show a high level of genetic polymorphism possibly due to the presence of mobile genetic elements such as insertion sequences (IS), transposons, and bacterial mobile introns. The analysis of the DNA sequence polymorphism of the nod region of S. meliloti pSymA megaplasmid in an Italian isolate led to the discovery of a new insertion sequence, ISRm31. ISRm31 is 2,803 bp long and has 22-bp-long terminal inverted repeat sequences, 8-bp direct repeat sequences generated by transposition, and three ORFs (A, B, C) coding for proteins of 124, 115, and 541 amino acids, respectively. ORF A and ORF C are significantly similar to members of the transposase family. Amino acid and nucleotide sequences indicate that ISRm31 is a member of the IS66 family. ISRm31 sequences were found in 30.5% of the Italian strains analyzed, and were also present in several collection strains of the Rhizobiaceae family, including S. meliloti strain 1021. Alignment of targets sites in the genome of strains carrying ISRm31 suggested that ISRm31 inserts randomly into S. meliloti genomes. Moreover, analysis of ISRm31 insertion sites revealed DNA sequences not present in the recently sequenced S. meliloti strain 1021 genome. In fact, ISRm31 was in some cases linked to DNA fragments homologous to sequences found in other rhizobia species.  相似文献   

9.
10.
Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.  相似文献   

11.
The nitrogen fixing Sinorhizobium meliloti possesses two genes, ppiA and ppiB, encoding two cyclophilin isoforms which belong to the superfamily of peptidyl prolyl cis/trans isomerases (PPIase, EC: 5.2.1.8). Here, we functionally characterize the two proteins and we demonstrate that both recombinant cyclophilins are able to isomerise the Suc-AAPF-pNA synthetic peptide but neither of them displays chaperone function in the citrate synthase thermal aggregation assay. Furthermore, we observe that the expression of both enzymes increases the viability of E. coli BL21 in the presence of abiotic stress conditions such as increased heat and salt concentration. Our results support and strengthen previous high-throughput studies implicating S. meliloti cyclophilins in various stress conditions.  相似文献   

12.
13.

Background  

Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recently determined Sinorhizobium meliloti genome sequence for genes potentially relevant to symbiosis. We describe here the construction and use of dedicated nylon macroarrays to study simultaneously the expression of 200 of these genes in a variety of environmental conditions, pertinent to symbiosis.  相似文献   

14.
15.
16.
Carrier induced granular particles comprising Enterobacter cloacae and Citrobacter freundii were used to generate H2 from sucrose in an anaerobic fluidized bed bioreactor. At a hydraulic retention time of 4.5 h, 95.8% of the sucrose was consumed and the rate of H2 production reached 180 mmol H2 l h−1. Biogas composition for H2 and CO2 was 42 and 55%, respectively. Alex von Holy—Deceased  相似文献   

17.
Cytochrome c heme lyases encoded by the Sinorhizobium meliloti cycHJKL operon are responsible for generating the covalent bond between the heme prosthetic group and apocytochromes c. The CycH protein with its presumably membrane-associated N-terminal and periplasmic C-terminal parts is thought to be responsible for binding apocytochrome and presenting it to the heme ligation machinery. We propose that these two modules of CycH play roles in different functions of the protein. The N-terminal 96 amino acids represent an active subdomain of the protein, which is able to complement the protoporphyrin IX (PPIX) accumulation phenotype of the cycH mutant strain AT342, suggesting that it is involved in the final steps of heme C biosynthesis. Furthermore, three tetratricopeptide (TPR) domains have been identified in the C-terminal periplasmic region of the CycH protein. TPR domains are known to mediate protein-protein interactions. Each of these CycH domains is absolutely required for protein function, since plasmid constructs carrying cycH genes with in-frame TPR deletions were not able to complement cycH mutants for their nitrate reductase (Rnr) and nitrogen-fixing (Fix) phenotypes. We also found that the 309-amino acid N-terminal portion of the CycH, which includes all the TPR domains, is able to mediate the assembly of the c-type cytochromes required for the Rnr+ phenotype. In contrast, only the full-length protein confers the ability to fix nitrogen.Communicated by A. Kondorosi  相似文献   

18.
19.
A novel finding that genomic restriction fragments of symbiotic nitrogen fixer S. meliloti hybridized with nifM gene probe of the free-living diazotroph Klebsiella pneumoniae is reported. When SmaI endonuclease was used to digest S. meliloti DNA, a unique hybridizing band was obtained.  相似文献   

20.
Most infections of plant roots are initiated in the region of elongation; the mechanism for this tissue-specific localization pattern is unknown. In alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter, the cell cycle in roots is completed in 48 h instead of 24 h, and border cell number is decreased by more than 99%. These plants were found to exhibit increased root-tip infection by a fungal pathogen and reduced nodule formation by a bacterial symbiont. Thus, the frequency of infection in the region of elongation by Nectria haematocca was unaffected, but infection of the root tip was increased by more than 90%; early stages of Sinorhizobium meliloti infection and nodule morphology were normal, but the frequency of nodulation was fourfold lower than in wild-type roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号