首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum concentrations of 17-hydroxypregnenolone, 17-hydroxypregnenolone sulfate and 17-hydroxyprogesterone were measured simultaneously in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency, using a combined radioimmunoassay method. All these precursor steroids were found to be markedly elevated in the sera of untreated patients with a salt-losing form of the disease, whereas, in untreated patients with a simple virilizing form, only the concentration of unconjugated steroids was increased and the 17-hydroxypregnenolone sulfate concentration remained within the normal range. Among the patients with a salt-losing form under maintenance therapy, these steroids were all still significantly increased in those on insufficient control, whereas only 17-hydroxyprogesterone was significantly but slightly increased in those on adequate control. Although the mechanism whereby the serum 17-hydroxypregnenolone sulfate concentration is not increased in the untreated simple virilizers is unknown, both a milder degree of 21-hydroxylase deficiency and a role of 17-hydroxypregnenolone sulfate in adrenal steroid production as a kind of supplier are suggested as possible explanations, especially in the neonatal period and early infancy. Thus, this study showed the serum concentrations of 17-hydroxypregnenolone and its sulfate together with 17-hydroxyprogesterone in patients with 21-hydroxylase deficiency in various conditions.  相似文献   

2.
Regio- and stereospecificity of microbial hydroxylation was studied at the transformation of 3-keto-4-ene steroids of androstane and pregnane series by the filamentous fungus of Curvularia lunata VKM F-644. The products of the transformations were isolated by column chromatography and identified using HPLC, massspectrometry (MS) and proton nuclear magnetic resonance (1H NMR) analyses. Androst-4-ene-3,17-dione (AD) and its 1(2)-dehydro- and 9α-hydroxylated (9-OH-AD) derivatives were hydroxylated by the fungus mainly in position 14α, while 6α-, 6β- and 7α-hydroxylated products were revealed in minor amounts. At the transformation of C21-steroids (cortexolone and its acetylated derivatives) the presence of 17-acetyl group was shown to facilitate further selectivity of 11β-hydroxylation. Original procedures for protoplasts obtaining, mutagenesis and mutant strain selection have been developed. A stable mutant (M4) of C. lunata with high 11β-hydroxylase activity towards 21-acetate and 17α,21-diacetate of cortexolone was obtained. Yield of 11β-hydroxylated products reached about 90% at the transformation of 17α, 21-diacetate of cortexolone (1 g/l) using mutant strain M4.  相似文献   

3.
Steroid 21-hydroxylase activity of the microsome-enriched fraction of follicular linings from equine ovaries has been demonstrated by gas chromatography-mass spectrometry. The 21-hydroxylated metabolites were quantified by isotope dilution with deuterated analogues. The two most abundant potential substrates for follicular steroid 21-hydroxylase, progesterone (P) and 17-hydroxyprogesterone (17OHP), were converted respectively to 11-deoxycorticosterone (DOC) and 11-deoxycortisol with corresponding apparent specific activities of 308 and 24 pmol/mg protein/h and apparent Km values of 1.1 and 6.4 microM. Competitive inhibition of the P-to-DOC conversion was exerted by 17OHP and pregnenolone. Hence, the ovarian follicle of the mare is an extraadrenal site of preferential DOC biosynthesis by an enzyme having steroid 21-hydroxylase activity.  相似文献   

4.
Spores of Curvularia lunata were immobilized by entrapment with photo-cross-linkable resin prepolymers and incubated to form mycelium in potato dextrose broth containing cortexolone (Reichstein compound S) as an inducer of steroid 11β-hydroxylase. In a buffer system containing 2.5% dimethyl sulfoxide, this immobilized mycelium hydroxylated cortexolone to hydrocortisone. The activity of this mycelium was comparable to the activity of free mycelium. Dimethyl sulfoxide did not inhibit hydroxylase activity at the concentration used and was effective in dissolving the product. Of the various photo-cross-linkable resin prepolymers examined, use of ENT-4000, whose main chain was polyethylene glycol 4000 (chain length, approximately 40 nm), resulted in maximum hydroxylation activity of the entrapped mycelium. The chain length of prepolymers affected markedly mycelial growth in the gels and, subsequently, the activity of the entrapped mycelium. The immobilized hydroxylation system was more stable than the system in free mycelium and could be reactivated by incubation of the entrapped mycelium in potato dextrose broth containing cortexolone. The system was tested 50 times during 100 days of operation and was found to carry out the desired transformation with overall yields of 60%.  相似文献   

5.
We report an assay for testicular 17, 20-lyase which depends on the use of [21?14C]progesterone as a substrate. The method is made possible by a simplified procedure for the synthesis of [21?14C]progesterone. A chromatographic separation of the unreacted substrate and the 2-carbon by-product on mini silica gel colums permitted a quantitative assay of the lyase activity.The lyase complex from rat testes has been solubilized by treatment with Triton CF-54 detergent. The solubilized enzyme complex catalyzes the formation of androstenedione (4-androstene-3,17-dione) from progesterone without equilibrium with added 17-hydroxyprogesterone and the solubilized enzyme complex responds to the presence of cytosol activator. Both of these characteristics are similar to the properties of the intact microsomes. Thus, solubilization with this detergent preserves the special properties of the microsome bound enzyme complex.  相似文献   

6.
A filamentous fungus Cunninghamella elegans IM 1785/21Gp which displays ability of 17alpha,21-dihydroxy-4-pregnene-3,20-dione (cortexolone) 11-hydroxylation (yielding epihydrocortisone (eF) and hydrocortisone (F)) and polycyclic aromatic hydrocarbons (PAHs) degradation, was used as a microbial eucaryotic model to study the relationships between mammalian steroid hydroxylation and PAHs metabolization. The obtained results showed faster transformation of phenanthrene in Sabouraud medium supplemented with steroid substrate (cortexolone). Simultaneously phenanthrene stimulated epihydrocortisone production from cortexolone. In phenanthrene presence the ratio between cortexolone hydroxylation products (hydrocortisone and epihydrocortisone) was changed from 1:5.1-6.2 to 1:7.6-8.4 in the culture without phenanthrene. Cytochrome P-450 content significantly increased after the culture supplementation by the second substrate, phenanthrene or cortexolone, adequately. To confirm the involvement of cytochrome P-450 in phenanthrene metabolism, the inhibition studies were performed. The cytochrome P-450 inhibitors SKF 525-A (1.5mM) and 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) (2mM) inhibited phenanthrene transformation by 80 and 62%, respectively. 1-aminobenzotriazole (1mM) completely blocked phenanthrene metabolism. The obtained results suggest a presence of connections between steroid hydroxylases and enzymes involved in PAH degradation in C. elegans.  相似文献   

7.
Further evidence that there is more than one adrenal 21-hydroxylase system   总被引:1,自引:0,他引:1  
The 21-hydroxylase activity of microsomes isolated from bovine adrenal cortex have been assayed using [21-3H]17-hydroxypregnenolone and [1,2-3H]17-hydroxyprogesterone as substrates. When the assays are performed in the presence of an NADH regenerating system, to inhibit steroid 3 beta-hydroxy isomerase-dehydrogenase activity, the microsomes oxidize the 3 beta-hydroxy-5-ene steroid at a rate of 0.37 nmol/min.nmol cytochrome P-450 and the 3-keto-4-ene steroid at a rate of 6.4 nmol/min.nmol. When the microsomes are solubilized with Triton CF-54 they lose the ability to oxidize the 3-hydroxy-5-ene steroid, while the specific activity of the microsomes for the 3-keto-4-ene steroid is enhanced 3-fold. In contrast, when the microsomes are solubilized with sodium cholate, their specific activity towards the 4-ene steroid is decreased by 50% while the specific activity for a low concentration of the 5-ene steroid, 1 microM, is unchanged. In addition, when the oxidations of the labeled steroids (at 1 microM) by the microsomes, are examined in the presence of unlabeled 17-hydroxyprogesterone (at 20 microM) the oxidation of the 3-keto-4-ene steroid is inhibited by 92% while the oxidation of the 3 beta-hydroxy-5-ene steroid is only inhibited by 20%. These results all suggest that there are at least two 21-hydroxylases in bovine adrenal tissue, one of which can utilize the 3-keto-4-ene steroids only, the other of which, in addition, can utilize the 3 beta-hydroxy-5-ene steroids as substrates.  相似文献   

8.
The following general characteristics of 21-hydroxylase activity were determined using pooled microsomes obtained from three glands. Enzyme activity exhibited a broad pH dependence, being optimal between pH 7.4-pH 7.8, and was maximal with NADPH in the range 2 to 4.75 X 10(-4)mol/l. No microsomal 21-hydroxylase activity was detected in the absence of NADPH or substrate and when heat denatured microsomes were employed. Enzyme activity was depressed by greater than 75% in the presence of 100% oxygen or nitrogen. In a second set of experiments, microsomal fractions were prepared individually from 7 glands. In the presence of 17 alpha-hydroxy progesterone (2.0 X 10(-7) and 2.0 X 10(-6)mol/l) product formation was linear with time for up to 90 s when the microsomal protein concentration was 5, 10 and 20 micrograms/ml. Between 5 and 30% of the substrate was converted during the first 60 s. In 5/7 of the glands the addition of the autologous cytosol (20 micrograms protein/ml) was without effect, and enzyme activity (using a 60 s reaction and either 2.0 X 10(-7) or 2 X 10(-6)mol/l 17 alpha-hydroxy progesterone was directly proportional to the microsomal protein concentration (range 0-20 micrograms/ml). With the other 2 adrenals 21-hydroxylation was not proportional to the same range of microsomal protein concentrations, although it became so upon the addition of cytosol, which significantly augmented activity. There was considerable variation in enzyme activity between glands from different individuals (Vmax ranging from 2.6 to 16.6 X 10(-9) mol/min/mg protein) and in the apparent Km's (from 0.22 to 1.1 X 10(-6)mol/l). In the two preparations sensitive to cytosol, the Vmax increased 2-fold, and the Km was 3 times lower. Cytosol was without effect upon the kinetic characteristics of the other 5 microsomal preparations. Ascorbic acid (1 X 10(-3) mol/l) depressed enzyme activity by 25-43% whereas oxidised and reduced glutathione (1 X 10(-3) mol/l) showed a slight and variable effect upon 21-hydroxylation.  相似文献   

9.
T F Ogle 《Steroids》1978,31(5):697-710
Experiments were designed to study the kinetic behavior of 21-hydroxylase and 11beta-hydroxylase as a function of enzyme concentration (Et) during proestrus, dasy 5 (D5), 12 (D12), and 22 (D22) of pregnancy, and within 24 h post-partum. The enzymes were prepared from rat adrenal microsomes and mitochondria, respectively. The experiments consisted of measuring the initial velocity of each reaction for a series of substrate concentrations at three fixed Et. Double reciprocal plots were constructed and the slope (Km/Vmax) of each line estimated. Variation in the value of the slope as a function of enzyme dilution would predict the presence of an endogenous effector. The kinetic behavior of 21-hydroxylase was not altered throughout the range of Et (10-100 microgram protein) at any of the reproductive stages. In contrast, kinetic behavior of 11beta-hydroxylase was clearly dependent upon Et. Dilution of the enzyme preparation (25-200 microgram of protein) increased the slope of the double reciprocal plot at all reproductive stages, thus suggesting that an activator substance may be present within the mitochondrial preparation. A secondary plot of the slope (Km/Vmax) versus Et described a power function (Km/Vmax = a [Et]b) with the greatest rate of change in Km/Vmax occurring at low values of Et. The rate of change in Km/Vmax per mg rise in mitochondrial protein at all dilutions of enzyme was greatest for proestrus and post-partum, followed by D22 greater than D12 greater than D5. In addition, repeated washing of the enzyme preparation at 4 degrees C increased Km/Vmax to a greater extent at all Et than did the control preparation. These findings suggest the presence of a diffusible endogenous activator of 11beta-hydroxylase whose influence decreases markedly at D5 and D12. On the other hand, there is no evidence to suggest the presence of a diffusible endogenous effector for 21-hydroxylase.  相似文献   

10.
A de Waal  L de Jong 《Biochemistry》1988,27(1):150-155
The number of peptide binding sites of prolyl 4-hydroxylase was manipulated with the peptide photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5, and the effect on hydroxylation of the relatively short peptide substrate (Pro-Pro-Gly)5 and of the long natural substrate procollagen was studied. With (Pro-Pro-Gly)5 as a substrate, a linear relation was found between enzyme activity and the amount of covalently bound photoaffinity label, approximately 50% inactivation being reached at 1 mol of label/mol of enzyme. No difference in Km value for (Pro-Pro-Gly)5 was detected between unlabeled and partially labeled enzyme preparations. These results indicate that enzyme molecules with only one free active site hydroxylated the synthetic substrate (Pro-Pro-Gly)5 with the same Km and at half the rate of native enzyme. In contrast, with procollagen as a substrate a 5-10-fold increase in Km was found with the fraction of enzyme containing only one free active site, as compared to the Km for procollagen with nonlabeled enzyme. This finding is explained by an enzyme-kinetic model based on a processive action of the two peptide substrate binding sites of prolyl 4-hydroxylase, preventing dissociation of the enzyme-substrate complex between successive hydroxylations of a long peptide with multiple substrate sites. Such a mechanism leads to a low Km for a long peptide by overcoming the diffusional constraints on the rate of association between the enzyme and the individual substrate sites.  相似文献   

11.
With the aim of understanding the structural basis for the substrate specificity of collagen prolyl 4-hydroxylase, we have studied the conformational features of synthetic oligopeptide substrates and their interaction with the enzyme purified from chicken embryo. Circular dichroism and infrared spectral data, taken in conjunction with relevant crystal structure data, indicated an equilibrium mixture of the polyproline-II (PP-II) helix, the beta-turn, and the random coil conformations in aqueous and trifluoroethanol solutions of the "collagen-related" peptides: t-Boc-Pro-Pro-Gly-Pro-OH, t-Boc-Pro-Pro-Gly-Pro-NHCH3, t-Pro-Pro-Gly-Pro-Pro-OH, t-Boc-Pro-Pro-Ala-Pro-OH, and t-Boc-Pro-Pro-Gln-Pro-OCH3, where t-Boc is tert-butoxycarbonyl. In another set of peptides related to elastin, t-Boc-Val-Pro-Gly-Val-OH and t-Boc-Gly-Val-Pro-Gly-Val-OH, the data indicated the beta-structure, rather than the PP-II helix, was in equilibrium with the beta-turn. Kinetic parameters for the enzymatic hydroxylation of the peptides showed that as a group, the first (proline-rich) set of peptides has higher Km values and lower Vmax and Kcat/Km values than the valine-rich peptides. Data on the inhibition of hydroxylation of the standard assay substrate (Pro-Pro-Gly)10 by the oligopeptides pointed to common binding sites for the peptides. Hydroxyproline-containing peptides had no effect on the hydroxylation of the standard substrate, showing the absence of product inhibition. Based on these and earlier data, we propose that in collagen and related peptides, a supersecondary structure consisting of the PP-II helix followed by the beta-turn is the minimal structural requirement for proline hydroxylation. The PP-II structure would aid effective interaction at the substrate binding subsites, while the beta-turn would be essential at the catalytic site of the enzyme. In elastin and related peptides, the beta-strand structure may be interchangeable with the PP-II structure. This conformational model for proline hydroxylation resolves the discrepancies in earlier proposals on the substrate specificity of prolyl 4-hydroxylase. It is also consistent with the available information on the active site geometry of the enzyme.  相似文献   

12.
The metabolism of 17 beta-estradiol was examined using both rabbit liver microsomes and highly purified forms of rabbit liver microsomal cytochrome P-450. The predominant microsomal metabolite of 17 beta-estradiol is the 2-hydroxylated product. 2-Hydroxyestradiol is also the principal metabolite in reconstitution experiments in which P-450 1 exhibits the greatest Vmax, ca. 6 mol min-1 mol P-450 1(-1), vs less than 0.6 mol min-1 mol P-450(-1) for forms 2, 3b-, 3b+, 3c, 4, and 6. In addition P-450 1 has the lowest Km, ca. 2 microM. This suggested that microsomes which differ in their content of P-450 1 would also differ in the kinetic parameters characterizing the 2-hydroxylation of 17 beta-estradiol. Microsomes containing low amounts of P-450 1, less than 0.1 nmol/mg protein, exhibit a low-efficiency (Vmax/Km) 2-hydroxylase activity. Microsomes containing elevated concentrations of P-450 1, greater than 0.3 nmol/mg protein, exhibit a substrate dependence suggestive of an additional high-efficiency enzyme. The latter is specifically inhibited by a monoclonal antibody that recognizes P-450 1. These results indicate that the elevated expression of P-450 1 in microsomes leads to a marked increase in the apparent first-order rate constant for the 2-hydroxylation of 17 beta-estradiol, as it does for the 21-hydroxylation of progesterone. This should have a marked effect on the metabolism of these two steroid hormones at concentrations that are likely to occur in vivo.  相似文献   

13.
Three families with late-onset 21-hydroxylase deficiency were studied. Homozygous females presented with symptoms of mild hyperandrogenism such as acne, hirsutism, oligomenorrhea and menometrorrhagia. A homozygous male was asymptomatic and had reached normal adult height. The diagnosis of 21-hydroxylase deficiency was based upon markedly elevated responses of plasma 17-hydroxyprogesterone during a short (30-min) ACTH infusion test. The propositi of two of the families were diagnosed despite long-standing glucocorticoid therapy and adrenal suppression by using a prolonged (48-hour) ACTH infusion. Heterozygotes of late-onset 21-hydroxylase deficiency had mildly elevated 17-hydroxy-progesterone responses to ACTH. Late-onset 21-hydroxylase deficiency was inherited as an autosomal recessive trait with close linkage to the histocompatibility leukocyte antigens. The B14 haplotype was present in all affected members. One affected female had a daughter with classic, salt-losing 21-hydroxylase deficiency. Mixed heterozygosity of this patient for a classic and a late-onset 21-hydroxylase deficiency allele may have caused the classic phenotype in her daughter (homozygote for 2 classic alleles).  相似文献   

14.
Basic and clinical aspects of congenital adrenal hyperplasia   总被引:1,自引:0,他引:1  
Defective steroid 21-hydroxylation is the most common of the biochemical defects causing hyperplasia of the adrenal cortex. The genetic mode of transmission of all enzyme abnormalities seen in cortisol biosynthesis is autosomal recessive. Steroid 21-hydroxylase deficiency has three currently accepted forms: the simple virilizing and salt-wasting variants of the classical deficiency, and the nonclassical (attenuated) form, which shows a wide clinical range of effects and whose characterization emerged from co-ordinated hormonal testing and family studies. More recent molecular genetic studies have started to identify specific mutations altering 21-hydroxylase activity. Defects in the other enzymes occur more rarely and are less well known, although initial work with abnormal 11 beta-hydroxylase and 3 beta-hydroxylase indicates that allelic gene defects may be correlated with different clinical phenotypes seen for these disorders also. The gene for the enzyme steroid 21-hydroxylase, a cytochrome P-450, is situated within the major histocompatibility complex on the p arm of human chromosome 6, proximal to the HLA-B antigen locus. Linkage disequilibria between certain B and DR alleles and classical and nonclassical 21-hydroxylase deficiency permit the use of HLA genotyping in conjunction with hormonal evaluation for diagnosis of this disorder and for identification of carrier haplotypes in population studies. Test programs have shown the feasibility of neonatal screening for 21-hydroxylase deficiency by blood-spot hormonal assay for elevated 17-hydroxyprogesterone. Prenatal detection of disease currently depends on HLA serotyping of cultured aminocytes jointly with measurement of amniotic 17-hydroxyprogesterone (13-18 week gestation); molecular genetic techniques with more specific nuclear probes will improve the specificity of this test and will in addition permit even earlier definitive fetal genotyping by chorionic villus biopsy (6-10 week gestation).  相似文献   

15.
The concentration of steroid hormones in cystic follicular fluid was determined in cows with cystic ovaries. There was a significant difference in concentrations of the hormones from the cysts with granulosa cell layers, and the cysts without granulosa cell layers or only 2 to 3 layers with pycnotic nuclei in the granulosa cells (P < 0.01). The cystic follicles that consist of both thecal- and granulosa cell layers contained a low amount of progesterone and high levels of 17α-hydroxyprogesterone, androgens and oestrogens, not different from preovulatory follicles.In contrast, cysts that consist only of thecal cell layers contained a very high amount of progesterone, but very low levels of 17α-hydroxyprogesterone, androgens and oestrogens. That is functionally similar to the bovine corpus luteum which produces high concentrations of progesterone but has no or very low 17α-hydroxylase activity.In conclusion, the cystic follicles without granulosa cells are not capable of secreting 17α-hydroxyprogesterone, androgens and oestrogens, in spite of high levels of progesterone. It may be suggested that in these cysts there is a blockade of 17α-hydroxylase activity.  相似文献   

16.
Studies were carried out to evaluate the effects of cadmium in vitro on microsomal steroid metabolism in the inner (zona reticularis) and outer (zona fasciculata and zona glomerulosa) zones of the guinea pig adrenal cortex. Microsomes from the inner zone have greater 21-hydroxylase than 17α-hydroxylase activity, resulting in the conversion of progesterone primarily to 11-deoxycorticosterone and of 17α-hydroxy progesterone principally to its 21-hydroxylated metabolite, 11-deoxycortisol. Microsomes from the outer zones, by contrast, have far greater 17α-hydroxylase and C17,20-lyase activities than 21-hydroxylase activity. As a result, progesterone is converted primarily to its 17-hydroxylated metabolite, 17α-hydroxyprogesterone; and 17α-hydroxyprogesterone is converted principally to δ4-androstenedione, with only small amounts of 21-hydroxylated metabolites being produced. Addition of cadmium to incubations with inner zone microsomes causes concentration-dependent decreases in 21-hydroxylation and increases in 17α-hydroxylase and C17,20-lyase activities, resulting in a pattern of steroid metabolism similar to that in normal outer zone microsomes. Cadmium similarly decreases 21-hydroxylation by outer zone microsomes but has no effect on the formation of 17-hydroxylated metabolites or on androgen (Δ4-androstenedione) production. In neither inner nor outer zone microsomes did cadmium affect cytochrome P-450 concentrations, steroid interactions with cytochrome(s) P-450, or NADPH–cytochrome P-450 reductase activities. The results indicate that cadmium produces both quantitative and qualitative changes in adrenal microsomal steroid metabolism and that the nature of the changes differs in the inner and outer adrenocortical zones. In inner zone microsomes, there appears to be a reciprocal relationship between 21-hydroxylase and 17α-hydroxylase/C17,20-lyase activities which may influence the physiological function(s) of that zone.  相似文献   

17.
18.
Samuel A. Sholl 《Steroids》1982,40(4):475-485
There is indirect evidence that cortisol synthesis in the fetal rhesus monkey adrenal gland is limited at Day 135 of gestation but increases thereafter. This study was conducted to ascertain whether a reduced synthetic capacity is caused by a deficiency in 17-, 21- or 11-hydroxylase activity. For the sake of comparison 11- and 21-hydroxylases were also estimated in adult adrenals. 11-, 21-Hydroxylases were measured in the entire adrenal by the oxidation of NADPH by mitochondria and microsomes, respectively. 17-Hydroxylase was evaluated in outer and inner regions of the fetal gland by the formation of [3H]17-hydroxyprogesterone, -11-deoxycortisol, -cortisol and -androstenedione from [3H]progesterone. The maximum velocity of both the 11- and 21-hydroxylase was similar in fetal and adult glands indicating that corticoid formation in the fetus is not constrained by levels of these enzymes.[3H]Progesterone was extensively metabolized to -17-hydroxyprogesterone, -androstenedione, -11-deoxycortisol and -cortisol by homogenates from both regions of the fetal adrenal. The ratio of [3H]-cortisol to [3H]11-deoxycortisol was consistently higher in incubations of the inner glandular area. Together, these findings indicate that 17-hydroxylase is also active at Day 135 and that the 11-hydroxylase may be more concentrated in the fetal cortex. These data suggest in addition that the restriction in cortisol formation occurs at a step prior to the metabolism of progesterone to cortisol.  相似文献   

19.
Pheochromocytoma tyrosine hydroxylase was reported to have unusual catalytic properties, which might be unique to the tumor enzyme (Dix, T. A., Kuhn, D. M., and Benkovic, S. J. (1987) Biochemistry 24, 3354-3361). Two such properties, namely the apparent inability to hydroxylate phenylalanine and an unprecedented reactivity with hydrogen peroxide were investigated further in the present study. Tyrosine hydroxylase was purified to apparent homogeneity from cultured pheochromocytoma PC12 cells. The purified tumor enzyme was entirely dependent on tetrahydrobiopterin (BH4) for the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine and hydrogen peroxide could not substitute for the natural cofactor. Indeed, in the presence of BH4, increasing concentrations of hydrogen peroxide completely inhibited enzyme activity. The PC12 hydroxylase exhibited typical kinetics of tyrosine hydroxylation exhibited typical kinetics of tyrosine hydroxylation, both as a function of tyrosine (S0.5 Tyr = 15 microM) and BH4 (apparent Km BH4 = 210 microM). In addition, the enzyme catalyzed the hydroxylation of substantial amounts of phenylalanine to tyrosine and 3,4-dihydroxyphenylalanine (apparent Km Phe = 100 microM). Phenylalanine did not inhibit the enzyme in the concentrations tested, whereas tyrosine showed typical substrate inhibition at concentrations greater than or equal to 50 microM. At higher substrate concentrations, the rate of phenylalanine hydroxylation was equal to or exceeded that of tyrosine. Essentially identical results were obtained with purified tyrosine hydroxylase from pheochromocytoma PC18 cells. The data suggest that the tumor enzyme has the same substrate specificity and sensitivity to hydrogen peroxide as tyrosine hydroxylase from other tissues.  相似文献   

20.
Pregnanetriol-3α-glucuronide (PTG) is the majority urinary metabolite of 17-hydroxyprogesterone (17OHP) and it typically increases in the commonest form of congenital adrenal hyperplasia (CAH), due to 21 hydroxylase deficiency. We developed a simple chemiluminescent immunoassay for the direct measurement of PTG in diluted urine in order to avoid the preliminary hydrolysis and extraction steps that are usually employed in gas–liquid chromatographic methods. The immunogenic complex PTG-bovine-serum-albumin was used to induce the formation of specific antibodies in New Zealand rabbits. In addition, PTG was conjugated to aminoethylethylisoluminol and the resulting tracer was characterized by mass spectrometry and used to monitor the immunological reaction. The characteristics of the antibody were determined with regard to specificity and sensitivity. The precision of the assay method was also established. PTG excretion was studied before and after the ACTH stimulation test (1 mg synthetic ACTH i.m.) in 11 normal women and in one subject affected by CAH due to 21-hydroxylase deficiency. PTG levels well correlated with 17OHP plasma concentrations both under basal and stimulated conditions, in normal women as well as in the patient affected by CAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号