首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).  相似文献   

2.
The effects of streptozotocin-induced diabetes on 125I-labeled epidermal growth factor (EGF) binding were studied in rat pancreatic acini. 125I-EGF binding was one-half maximal at 20 min, and maximal at 90 min. Saturation data revealed a decreased binding capacity in diabetic acini when compared with normal acini. Insulin, in vivo, normalized the decreased binding capacity. 125I-EGF internalization was also decreased in diabetic rat acini. Further, the inhibitory effect of cholecystokinin-octapeptide (CCK8) on cell-associated 125I-EGF radioactivity was significantly greater in diabetic than in normal rat acini. These findings suggest that insulin deficiency may lead to defective regulation of the exocrine pancreas by EGF.  相似文献   

3.
In isolated rat pancreatic acini, Src, RhoA, PI3-K, Vav-2, G(alpha12), and G(alpha13) were detected by immunoblotting. CCK enhanced the levels of these proteins, and the levels of Src and RhoA were reduced by the Src inhibitor herbimycin A and the Rho inhibitor pravastatin. The PI3-K inhibitor wortmannin reduced the level of PI3-K. These inhibitors also decreased amylase secretion in CCK-treated pancreatic acini without altering basal secretion. Immunoprecipitation studies indicated that CCK caused Src to associate with Vav-2, RhoA, and PI3-K and RhoA and Src to associate with Vav-2. Ras, RasGAP, and SOS did not coimmunoprecipitate with Vav-2, and RasGAP and SOS did not coimmunoprecipitate with RhoA. CCK also enhanced Vav-2 and RhoA to coimmunoprecipitate with G(alpha13). We conclude that CCK stimulates the recruitment of the Src-RhoA-PI3-K signaling pathway by Vav-2 downstream of G(alpha13) in pancreatic acini.  相似文献   

4.
The transmission of extracellular proliferation and differentiation signals into their intracellular targets is mediated by a signaling cascade culminating in mitogen-activated protein kinase (MAPK) also known as ERK. In pancreatic acinar cells both cholecystokinin (CCK) and epidermal growth factor (EGF) are known to stimulate ERK. Regulatory interactions among individual receptor-coupled signaling cascades are critically important for establishing cellular responses in the face of multiple stimuli. The aim of our study was to evaluate the effect of concomitant stimulation of G protein-coupled receptors (GPCR) and EGF receptors on ERK activity in isolated pancreatic acinar cells. ERK activity was determined by means of Western-blotting, with the use of the antibody which recognizes active, tyrosine-phosphorylated kinase (pY-ERK). pY-ERK level was strongly elevated by 10 nM CCK-8, 100 microM carbachol (CAR), or 100 nM EGF. The addition of EGF to 60 min-lasting incubations of acini with CCK-8 or CAR caused abrupt decrease of pY-ERK level to 56 and 59% of control, respectively. Similar phenomenon was observed when short stimulation with CCK-8 or CAR was superimposed on the effect of EGF. After the addition of EGF to acini incubated previously with phorbol ester TPA, strong decrease in pY-ERK level was also observed. In conclusion, in pancreatic acinar cells, concomitant stimulation with CCK or CAR and EGF has strong inhibitory effect on ERK cascade. This inhibitory cross-talk may be mediated, at least partially, by protein kinase C (PKC). These mutual inhibitory interactions demonstrate novel mechanism for integration of multiple signals generated by activation of G-protein-coupled and growth factor receptors in pancreatic acinar cells.  相似文献   

5.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

6.
Crk belongs to a family of adapter proteins whose structure allows interaction with tyrosine-phosphorylated proteins and is therefore an important modulator of downstream signals, representing a convergence of the actions of numerous stimuli. Recently, it was demonstrated that cholecystokinin (CCK) induced tyrosine phosphorylation of proteins related to fiber stress formation in rat pancreatic acini. Here, we investigated whether CCK receptor activation signals through CrkII and forms complexes with tyrosine-phosphorylated proteins in rat pancreatic acini. We demonstrated that CCK promoted the transient formation of CrkII-paxillin and CrkII-p130Cas complexes with maximal effect at 1 min. Additionally, CCK decreased the electrophoretic mobility of CrkII. This decrease was time- and concentration-dependent and inversely related with its function. Carbachol and bombesin also decreased CrkII electrophoretic mobility, whereas epidermal growth factor, vasoactive intestinal peptide, secretin or pituitary adenylate cyclase-activating polypeptide had no effect. CCK-induced CrkII electrophoretic shift was dependent on the Src family of tyrosine kinases and occurred in the intact animal, suggesting a physiological role of CrkII mediating CCK actions in the exocrine pancreas in vivo.  相似文献   

7.
Liu HW  Cheng B  Yu WL  Sun RX  Zeng D  Wang J  Liao YX  Fu XB 《Life sciences》2006,79(5):475-483
Angiotensin II (Ang II) stimulation has been shown to regulate proliferation of skin fibroblasts and production of extracellular matrix, which are very important process in skin wound healing and scarring; however, the signaling pathways involved in this process, especially in humans, are less explored. In the present study, we used skin fibroblasts of human hypertrophic scar, which expressed both AT1 and AT2 receptors, and observed that Ang II increased Akt phosphorylation and phosphoinositide 3 kinase (PI 3-K) activity. In addition, the Ang II-induced Akt phosphorylation was blocked by wortmannin, a PI 3-K inhibitor. This Ang II-activated PI 3-K/Akt cascade was markedly inhibited by valsartan, an AT(1) receptor-specific blocker, whereas it was enhanced by PD123319, an AT(2) receptor antagonist. On the other hand, the Ang II- or EGF-induced activation of PI 3-K/Akt was strongly attenuated by AG1478, an inhibitor of epidermal growth factor (EGF) receptor kinase. Moreover, Ang II stimulated tyrosine phosphorylation of EGF receptor and p85alpha subunit of PI 3-K accompanied by an increase in their association, which was inhibited by valsartan, and enhanced by PD123319. The Ang II-induced transactivation of EGF receptor resulted in activation of extracellular signal-regulated kinase (ERK) that was also inhibited by valsartan, and enhanced by PD123319. Taken together, our results showed that AT(1) receptor-mediated activation of PI 3-K/Akt cascades occurs at least partially via the transactivation of EGF receptor, which is under a negative control by AT(2) receptor in hypertrophic scar fibroblasts. These findings contribute to understanding the molecular mechanism of human hypertrophic scar formation.  相似文献   

8.
Recent studies demonstrate that reactive oxygen species (ROS) are important mediators of acute pancreatitis, whether induced experimentally or in necrotizing pancreatitis in humans; however, the cellular processes involved remain unclear. Adapter protein CrkII, plays a central role for convergence of cellular signals from different stimuli. Cholecystokinin (CCK), which induces pancreatitis, stimulates CrkII tyrosine phosphorylation and CrkII protein complexes, raising the possibility it can be important in the acinar cell responses to ROS. Therefore, our aim was to investigate whether CrkII signaling is involved in the biological response of rat pancreatic acini to H2O2 and the intracellular mediators implicated. Treatment of isolated rat pancreatic acini with H2O2 rapidly stimulates CrkII phosphorylation, measured as electrophoretic mobility shift and by using a phosphospecific antibody (pTyr221). Tyrosine kinase blocker B44 inhibits the higher phosphorylation state, demonstrating that it occurs mainly in tyrosine residues. H2O2-induced CrkII phosphorylation is time- and concentration-dependent, showing maximal effect with 3 mM H2O2 at 5 min. The intracellular pathways induced by H2O2 leading to CrkII tyrosine phosphorylation do not involve PKC, intracellular calcium, PI3-K or the actin cytoskeleton integrity. ROS generation clearly promotes the formation of protein complex CrkII-PYK2. In conclusion, ROS clearly affect the key adapter protein CrkII signaling by two ways: stimulation of CkII phosphorylation and a functional consequence: formation of CrkII-protein complexes. Because of its central role in activating more distal pathways, CrkII might likely play an important role in the ability of ROS to induce pancreatic cellular injury and pancreatitis.  相似文献   

9.
Intra-acinar cell nuclear factor-kappaB (NF-kappaB) and trypsinogen activation are early events in secretagogue-induced acute pancreatitis. We have studied the relationship between NF-kappaB and trypsinogen activation in rat pancreas. CCK analogue caerulein induces early (within 15 min) parallel activation of both NF-kappaB and trypsinogen in pancreas in vivo as well as in pancreatic acini in vitro. However, NF-kappaB activation can be induced without trypsinogen activation by lipopolysaccharide in pancreas in vivo and by phorbol ester in pancreatic acini in vitro. Stimulation of acini with caerulein after 6 h of culture results in NF-kappaB but not trypsinogen activation. Protease inhibitors (AEBSF, TLCK, and E64d) inhibit both intracellular trypsin activity and NF-kappaB activation in caerulein stimulated acini. A chymotrypsin inhibitor (TPCK) inhibits NF-kappaB activation but not trypsin activity. The proteasome inhibitor MG-132 prevents caerulein-induced NF-kappaB activation but does not prevent trypsinogen activation. These findings indicate that although caerulein-induced NF-kappaB and trypsinogen activation are temporally closely related, they are independent events in pancreatic acinar cells. NF-kappaB activation per se is not required for the development of early acinar cell injury by supramaximal secretagogue stimulation.  相似文献   

10.
The mechanisms by which growth factors trigger signal transduction pathways leading to protection against apoptosis are of great interest. In this study, we investigated the effect of hepatocyte growth factor (HGF/SF) and epidermal growth factor (EGF) on adriamycin (ADR)-induced apoptosis. Treatment of human epithelial MKN74 cells with ADR, a DNA topoisomerase IIalpha inhibitor, caused apoptosis. However, cells pretreated with HGF/SF, but not those pretreated with EGF, were resistant to this apoptosis. The protective effect of HGF/SF against the ADR-induced apoptosis was abolished in the presence of either LY294002, an inhibitor of phosphatidylinositol-3'-OH kinase (PI3-K) or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, an inhibitor of Akt, thus implicating the activation of PI3-K-Akt signaling in the antiapoptotic action of HGF/SF. Immunoblotting analysis revealed that HGF/SF stimulated the sustained phosphorylation of Akt for several hours but that EGF stimulated the phosphorylation only transiently. Furthermore, ADR-induced activation of caspase-9, a downstream molecule of Akt, was inhibited for at least 24 h after HGF/SF stimulation, but it was not affected by EGF stimulation. Cell-surface biotin-labeling analysis showed that the HGF/SF receptor remained on the cell surface until at least 30 min after HGF/SF addition but that the EGF receptor level on the cell surface was attenuated at an earlier time after EGF addition. These results indicate that HGF/SF, but not EGF, transmitted protective signals against ADR-induced apoptosis by causing sustained activation of the PI3-K-Akt signaling pathway. Furthermore, the difference in antiapoptotic capacity between HGF/SF and EGF is explained, at least in part, by the delayed down-regulation of the HGF/SF receptor.  相似文献   

11.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

12.
Protein kinase C-delta (PKC-delta) becomes activated in pancreatic acini in response to cholecystokinin (CCK) and plays a pivotal role in the exocrine pancreatic secretion. Rottlerin, a polyphenolic compound, has been widely used as a potent and specific PKC-delta inhibitor. However, some recent studies showed that rottlerin was not effective in inhibiting PKCdelta activity in vitro and that may display unspecific effects. The aims of this work were to investigate the specificity of rottlerin as an inhibitor of PKC-delta activity in intact cells and to elucidate the biochemical causes of its unspecificity. Preincubation of pancreatic acini with rottlerin (6 microM) inhibited CCK-stimulated translocation, tyrosine phosphorylation (TyrP) and activation of PKC-delta in pancreatic acini in a time-dependent manner. Rottlerin inhibited amylase secretion stimulated by both PKC-dependent pathways (CCK, bombesin, carbachol, TPA) and also by PKC-independent pathways (secretin, VIP, cAMP analogue). CCK-stimulation of MAPK activation and p125(FAK) TyrP which are mediated by PKC-dependent and -independent pathways were also inhibited by rottlerin. Moreover, rottlerin rapidly depleted ATP content in pancreatic acini in a similar way as the mitochondrial uncouplers CCCP and FCCP. All studied inhibitory effects of rottlerin in pancreatic acini were mimicked by FCCP (agonists-stimulated amylase secretion, p125(FAK) TyrP, MAPK activation and PKC-delta TyrP and translocation). Finally, rottlerin as well as FCCP display a potent inhibitory effect on the activation of other PKC isoforms present in pancreatic acini. Our results suggest that rottlerin effects in pancreatic acini are not due to a specific PKC-delta blockade, but likely due to its negative effect on acini energy resulting in ATP depletion. Therefore, to study the role of PKC-delta in cellular processes using rottlerin it is essential to keep in mind that may deplete ATP levels and inhibit different PKC isoforms. Our results give reasons for a more careful choice of rottlerin for PKC-delta investigation.  相似文献   

13.
In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and NGF-stimulated chemotaxis in PC12 cells. The threshold ERK activity required for NGF to stimulate chemotaxis was approximately 30% lower than that for EGF. PD98059 treatment inhibited EGF stimulation of growth and chemotaxis; however, stimulation of chemotaxis required an EGF concentration approximately 10 times higher than for stimulation of PC12 cell growth. Thus, ERK-dependent cellular functions can be differentially elicited by the concentration of EGF. Also, treatment of PC12 cells with the PI3-K inhibitor LY294002 reduced ERK activation by NGF; thus, higher NGF concentrations were required to initiate chemotaxis and to achieve the same maximal chemotactic response seen in untreated PC12 cells. Therefore, the threshold NGF concentration to stimulate chemotaxis could be adjusted by the crosstalk between the ERK and PI3-K pathways, and the contributions of PI3-K and ERK to signal chemotaxis varied with the concentrations of NGF used. In comparison, LY294002 treatment had no effect on ERK activation by EGF, but the chemotactic response was reduced at all the concentrations of EGF tested indicating that NGF and EGF differed in the utilization of ERK and PI3-K to signal chemotaxis in PC12 cells. (Mol Cell Biochem 271: 29–41, 2005)  相似文献   

14.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

15.
Carbachol (CCh) and epidermal growth factor (EGF) elicited a concentration-dependent increase in [32P]phosphatidyl-inositol-4-phosphate (PtdIns-4P) formation in homogenates derived from agonist-stimulated rat pancreatic acini. The combination of CCh and EGF produced a response which was not synergistic or additive. EGF, unlike CCh, failed to cause [32P]PtdIns-4,5P2 breakdown, suggesting different mechanisms involved in the stimulation of [32P]PtdIns-4P formation induced by EGF and CCh. We conclude that PtdIns kinase represents a key component of the signaling pathways utilized by EGF and CCh in exocrine pancreas.  相似文献   

16.
Endoplasmic reticulum (ER) stress leads to the accumulation of misfolded proteins in the ER lumen and initiates the unfolded protein response (UPR). Components of the UPR are important in pancreatic development, and recent studies have indicated that the UPR is activated in the arginine model of acute pancreatitis. However, the effects of secretagogues on UPR components in the pancreas are unknown. The present study aimed to examine the effects of different types and concentrations of secretagogues on acinar cell function and specific components of the UPR. Rat pancreatic acini were stimulated with the CCK analogs CCK8 (10 pM-10 nM) or JMV-180 (10 nM-10 microM) or with bombesin (1-100 nM). Components of the UPR, including chaperone BiP expression, PKR-like ER kinase (PERK) phosphorylation, X box-binding protein 1 (XBP1) splicing, and CCAAT/enhancer binding protein homologous protein (CHOP) expression, were measured, as were effects on amylase secretion and intracellular trypsin activation. CCK8 generated a biphasic secretion dose-response curve, and high concentrations increased intracellular active trypsin levels. In contrast, JMV-180 and bombesin secretion dose-response curves were monophasic, and high concentrations did not increase intracellular trypsin activity. All three secretagogues increased BiP levels and XBP1 splicing. However, only supraphysiological levels of CCK8 associated with inhibited amylase secretion and trypsin activation stimulated PERK phosphorylation and expression of CHOP. The effects of CCK8 on UPR components were rapid, occurring within 5-20 min. In conclusion, ER stress response mechanisms appear to be involved in both pancreatic physiology and pathophysiology, and future efforts should be directed at understanding the roles of these mechanisms in the pancreas.  相似文献   

17.
Direct modulation of epidermal growth factor binding by cholecystokinin   总被引:1,自引:0,他引:1  
The effects of cholecystokinin-octapeptide (CCK8), the biologically active C-terminal moiety of cholecystokinin (CCK), on the binding of epidermal growth factor (EGF) were studied in isolated rat pancreatic acini. CCK8 inhibited 125I-EGF binding in a dose-dependent manner. One-half maximal inhibition occurred at 5 X 10(-10)M, and maximal inhibition at 10(-8)M CCK8. This inhibitory effect was detectable within 5 minutes of addition of CCK8, and was not associated with enhanced degradation of 125I-EGF in incubation media. Unlabeled EGF exerted only a slightly greater inhibitory effect than CCK8 on 125I-EGF binding at equivalent molar concentrations. In contrast to CCK8, the gastrointestinal hormone vasoactive intestinal polypeptide (VIP) did not significantly alter EGF binding. CCK8 also inhibited EGF binding in mouse pancreatic acini, but did not alter binding in A-431 human carcinoma cells. These findings suggest that physiological levels of CCK may regulate EGF binding in the pancreas and other tissues with receptors for both hormones. They thus point to a previously unrecognized mechanism for hormonal interaction.  相似文献   

18.
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.  相似文献   

19.
The effects of ethanol administration on exocrine pancreas have been widely studied, but little is known about the effect of dietary fiber in combination with chronic ethanol on exocrine pancreatic function. The aim of this work was to examine the chronic effects of a high fiber diet, ethanol ingestion, and a combination of both on the function of the rat exocrine pancreas. Four groups of rats were fed for six months the following diets: 1.- NW: standard laboratory diet; 2.- FW: high fiber diet (15% cellulose); 3.- NE: standard laboratory diet and 20% ethanol in the drinking water; and 4.- FE: high fiber diet and 20% ethanol. Cholecystokinin (CCK) and acetylcholine (Ach) effects on amylase release and intracellular calcium mobilization in pancreatic acini were studied. In rats fed a 20% ethanol (NE), both the basal amylase release and the basal [Ca(2+)](i) were significantly increased; nonetheless, CCK and Ach-induced amylase release were significantly reduced compared with control rats. Ach- but not CCK-stimulated [Ca(2+)](i) increase in NE rats was significantly decreased compared with NW. In rats fed a combination of ethanol and a high fiber diet (FE) all the parameters under study were not significantly affected compared to control rats (NW). In conclusion, high fiber consumption does not alter the function of the exocrine pancreas. However, it ameliorates the deleterious effect of chronic ethanol consumption on pancreatic amylase secretion and, at least partially, reverses the ethanol-induced alterations on [Ca(2+)](i) in the rat exocrine pancreas.  相似文献   

20.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号