首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glutathione (GSH) is an intracellular antioxidant synthesized from glutamate, cysteine and glycine. The human erythrocyte (red blood cell, RBC) requires a continuous supply of glutamate to prevent the limitation of GSH synthesis in the presence of sufficient cysteine, but the RBC membrane is almost impermeable to glutamate. As optimal GSH synthesis is important in diseases associated with oxidative stress, we compared the rate of synthesis using two potential glutamate substrates, α-ketoglutarate and glutamine. Both substrates traverse the RBC membrane rapidly relative to many other metabolites. In whole RBCs partially depleted of intracellular GSH and glutamate, 10 mm extracellular α-ketoglutarate, but not 10 mm glutamine, significantly increased the rate of GSH synthesis (0.85 ± 0.09 and 0.61 ± 0.18 μmol·(L RBC)(-1) ·min(-1), respectively) compared with 0.52 ± 0.09 μmol·(L RBC)(-1) ·min(-1) for RBCs without an external glutamate source. Mathematical modelling of the situation with 0.8 mm extracellular glutamine returned a rate of glutamate production of 0.36 μmol·(L RBC)(-1) ·min(-1), while the initial rate for 0.8 mM α-ketoglutarate was 0.97 μmol·(L RBC)(-1) ·min(-1). However, with normal plasma concentrations, the calculated rate of GSH synthesis was higher with glutamine than with α-ketoglutarate (0.31 and 0.25?μmol·(L RBC)(-1) ·min(-1), respectively), due to the substantially higher plasma concentration of glutamine. Thus, a potential protocol to maximize the rate of GSH synthesis would be to administer a cysteine precursor plus a source of α-ketoglutarate and/or glutamine.  相似文献   

3.
Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1–10 mM. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress.  相似文献   

4.
Changes in glutathione contents occur in plants during environmental stress situations, such as pathogen attack, as the formation of reactive oxygen species leads to the activation of the antioxidative defence system. As glutathione is synthesized out of its constituents cysteine, glycine, and glutamate the availability of these components will limit glutathione synthesis in plants especially during stress situations and therefore the ability of the plant to fight oxidative stress. To gain a deeper insight into possible limitations of glutathione synthesis during pathogen attack the present investigations were aimed to study how the subcellular distribution of glutathione precursors correlates with the subcellular distribution of glutathione during virus attack in plants. Selective antibodies against cysteine, glutamate, and glycine were used to study the impact of Zucchini yellow mosaic virus (ZYMV) infection on glutathione precursor contents within different cell compartments of cells from Cucurbita pepo (L.) plants with the transmission electron microscope (TEM). Generally, levels of cysteine and glutamate were found to be strongly decreased in most cell compartments of younger and older leaves including glutathione-producing cell compartments such as plastids and the cytosol. The strongest decrease of cysteine was found in plastids (- 54 %) and mitochondria (- 51 %) of younger leaves and in vacuoles (- 37 %) and plastids (- 29 %) of older leaves. The strongest decrease of glutamate in younger leaves occurred in peroxisomes (- 67 %) and nuclei (- 58 %) and in peroxisomes (- 64 %) and plastids (- 52 %) of the older ones. Glycine levels were found to be strongly decreased (- 63 % in mitochondria and - 53 % in plastids) in most cell compartments of older leaves and strongly increased (about 50 % in plastids and peroxisomes) in all cell compartments of the younger ones. These results indicate that low glycine contents in the older leaves were responsible for low levels of glutathione in these organs during ZYMV infection rather than limited amounts of cysteine or glutamate. Glutathione precursors were virtually absent in cell walls and intercellular spaces and play therefore no important role during ZYMV attack in the apoplast. While glutamate was absent in vacuoles, elevated levels of glycine (up to 30 %) and decreased cysteine contents (up to - 37 %) were observed in vacuoles during ZYMV infection. The impact of the present results on the current knowledge about glutathione synthesis and degradation on the cellular level during ZYMV infection are discussed.  相似文献   

5.
Blood plasma samples from HIV-1-infected persons contain elevated glutamate concentrations up to 6-fold the normal level and relatively low concentrations of acid-soluble thiol (i.e. decreased cysteine concentrations). The intracellular glutathione concentration in peripheral blood-mononuclear cells (PBMC) and monocytes from HIV antibody-positive persons are also significantly decreased. Therapy with azidothymidine (AZT) causes a substantial recovery of the plasma thiol levels; but glutamate levels remain significantly elevated and intracellular glutathione levels remain low. Cell culture experiments with approximately physiological amino-acid concentrations revealed that variations of the extracellular cysteine concentration have a strong influence on the intracellular glutathione level and the rate of DNA synthesis [( 3H]thymidine incorporation) in T cell clones and human and murine lymphocyte preparations even in the presence of several-fold higher cystine and methionine concentrations. Cysteine cannot be replaced by a corresponding increase of the extracellular cystine or methionine concentration. These experiments suggest strongly that the low cysteine concentration in the plasma of HIV-infected persons may play a role in the pathogenetic mechanism of the acquired immunodeficiency syndrome.  相似文献   

6.
The nature of the mechanisms underlying the age-related decline in glutathione (GSH) synthetic capacity is at present unclear. Steady-state kinetic parameters of mouse liver GCL (glutamate-cysteine ligase), the rate-limiting enzyme in GSH synthesis, and levels of hepatic GSH synthesis precursors from the trans-sulfuration pathway, such as homocysteine, cystathionine and cysteine, were compared between young and old C57BL/6 mice (6- and 24-month-old respectively). There were no agerelated differences in GCL V(max), but the apparent K(m) for its substrates, cysteine and glutamate, was higher in the old mice compared with the young mice (approximately 800 compared with approximately 300 microM, and approximately 710 compared with 450 microM, P<0.05 for cysteine and glutamate in young and old mice respectively). Amounts of cysteine, cystathionine and Cys-Gly increased with age by 91, 24 and 28% respectively. Glutathione (GSH) levels remained unchanged with age, whereas GSSG content showed an 84% increase, suggesting a significant pro-oxidizing shift in the 2GSH/GSSG ratio. The amount of the toxic trans-sulfuration/glutathione biosynthetic pathway intermediate, homocysteine, was 154% higher (P<0.005) in the liver of old mice compared with young mice. The conversion of homocysteine into cystathionine, a rate-limiting step in trans-sulfuration catalysed by cystathionine beta-synthase, was comparatively less efficient in the old mice, as indicated by cystathionine/homocysteine ratios. Incubation of tissue homogenates with physiological concentrations of homocysteine caused an up to 4.4-fold increase in the apparent K(m) of GCL for its glutamate substrate, but had no effect on V(max). The results suggest that perturbation of the catalytic efficiency of GCL and accumulation of homocysteine from the trans-sulfuration pathway may adversely affect de novo GSH synthesis during aging.  相似文献   

7.
gamma-Glutamylcysteine ligase (GCL) combines cysteine and glutamate through its gamma carboxyl moiety as the first step for glutathione (GSH) synthesis and is considered to be the rate-limiting enzyme in this pathway. The enzyme is a heterodimer, with a heavy catalytic and a light regulatory subunit, which plays a critical role in the anti-oxidant response. Besides the original method of Seelig designed for the measurement of a purified enzyme, few endpoint methods, often unrefined, are available for measuring it in complex biological samples. We describe a new, fast and reliable kinetic LC/MS method which enabled us to optimize its detection. l-2-Aminobutyrate is used instead of cysteine (to avoid glutathione synthetase interference) as triggering substrate with saturating concentrations of glutamate and ATP; the gamma glutamylaminobutyrate formed is measured at m/z=233 at regular time intervals. Reaction rate is maximum because ATP is held constant by enzymatic recycling of ADP by pyruvate kinase and phosphoenolpyruvate. The repeatability of the method is good, with CV% of 6.5 and 4% for catalytic activities at, respectively 0.9 and 34 U/l. The affinities of rat and human enzymes for glutamate and aminobutyrate are in good agreement with previous published data. However, unlike the rat enzyme, human GCL is not sensitive to reduced glutathione and displays a more basic optimum pH.  相似文献   

8.
《Free radical research》2013,47(2):89-94
Abstract

Glutathione (GSH) is an important cellular antioxidant and has a critical role in maintaining the balance of cellular redox. In this study, we investigated the GSH biosynthesis genes involved in the elevation of endogenous GSH levels using an irradiation system with an irradiation dose rate of 1.78 mGy/h, which was about 40,000 times less than the dose rates used in other studies. The results showed that GSH levels were significantly increased in the low-dose (0.02 and 0.2 Gy) irradiated group compared to those in the non-irradiated group, but enzymatic antioxidants such as superoxide dismutase and catalase were not induced at any doses tested. The elevation in GSH was accompanied by elevated expression of glutamate–cysteine ligase modifier subunit, but no changes were observed in the expression of glutamate–cysteine ligase catalytic subunit and thioredoxin in de novo GSH synthesis. In the case of genes involved in the GSH regeneration cycle, the expression of glutathione reductase was not changed after irradiation, whereas glutathione peroxidase was only increased in the 0.2 Gy irradiated group. Collectively, our results suggest that the de novo pathway, rather than the regeneration cycle, may be mainly switched on in response to stimulation with long-term low-dose radiation in the spleen.  相似文献   

9.
The tripeptide glutathione is an important biomolecule that acts as a scavenger of free radicals and plays a role in a number of other cellular processes. A number of diseases, including Parkinson's disease, cancer, sickle cell anemia, and HIV infection, are thought to involve oxidative stress and depletion of glutathione. The heterodimeric enzyme glutamate cysteine ligase catalyzes the first, rate-limiting step in the de novo synthesis of glutathione. Functional polymorphisms within the gene encoding the subunits of glutamate cysteine ligase have the potential to affect the body's capacity to synthesize glutathione and thus, may affect those diseases in which oxidative stress and glutathione have roles. We undertook systematic screening for polymorphisms within the exons and intronic flanking sequences of the gene encoding the catalytic subunit of glutamate cysteine ligase (GCLC). We identified 11 polymorphisms in GCLC and established allele frequencies for those polymorphisms in a population fitting the demographics of the middle Tennessee area. The nonsynonymous polymorphism C1384T was found only in individuals of African descent. In addition, allele frequencies for three other polymorphisms differ between Caucasians and African-Americans. Understanding these polymorphisms may lead to better understanding of diseases where glutathione is important so that better treatments may be developed.  相似文献   

10.
Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) - the first enzyme of glutathione synthesis - causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells.  相似文献   

11.
Nitric oxide (*NO) is a reactive nitrogen species known to be involved in cytotoxic processes. Cells respond to cytotoxic injury by stress response induction leading to the development of cellular resistance. This report describes an *NO-induced stress response in Chinese hamster fibroblasts (HA1), which leads to glutathione synthesis-dependent resistance to H2O2-mediated oxidative stress. The development of resistance to H2O2 was completely abolished by the inhibition of glutamate cysteine ligase (GCL) during the first 8 h of recovery after *NO exposure. Altered thiol metabolism was observed immediately after *NO exposure as demonstrated by up to 75% decrease in intracellular thiol pools (glutathione, gamma-glutamylcysteine, and cysteine), which then reaccumulated during the *NO-mediated development of resistance. Immunoreactive protein and activity associated with GCL decreased immediately after exposure to *NO and then reaccumulated during the development of resistance to H2O2 challenge. Moreover, compared to N2 controls the activity levels of GCL in *NO-exposed cells increased approximately twofold 24 h after H2O2 challenge. These results demonstrate that *NO exposure is capable of inducing an adaptive response to H2O2-mediated oxidative stress in mammalian cells, which involves alterations in thiol metabolism and is dependent upon glutathione synthesis and increased GCL activity.  相似文献   

12.
Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl2 (2.1 Å; R = 18.2%, Rfree = 21.9%), and in complex with glutamate, MgCl2, and ADP (2.7 Å; R = 19.0%, Rfree = 24.2%). Inspection of these structures reveals an unusual binding pocket for the α-carboxylate of the glutamate substrate and an ATP-independent Mg2+ coordination site, clarifying the Mg2+ dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.  相似文献   

13.
Human placenta glutathione transferase pi is irreversibly inhibited when incubated with 1-chloro-2,4-dinitrobenzene (CDNB) in the absence of the cosubstrate glutathione. The enzyme is protected against CDNB inactivation by the presence of S-methylglutathione and glutathione. The kinetics of inactivation is pseudo-first-order with k(obs) = 0.04 min-1 when 44 microM enzyme is incubated in presence of 1 mM CDNB at pH 6.5. The inhibition is saturable with respect to the CDNB concentration and the enzyme-CDNB complex shows a K(i) = 2.7 mM. Concomitant to the inhibition process is formation of an absorption band at 340 nm. After trypsin digestion and HPLC analysis, the CDNB-reacted enzyme gives a single peptide absorbing at 340 nm. Automated Edman degradation of this peptide indicates cysteine 47 to be the residue alkylated by CDNB.  相似文献   

14.
Abstract

Glutathione is an intracellular antioxidant that often becomes depleted in pathologies with high oxidative loads. We investigated the provision of cysteine for glutathione synthesis to the human erythrocyte (red blood cell; RBC). Almost all plasma cysteine exists as cystine, its oxidized form. In vitro, extracellular cystine at 1.0 mM sustained glutathione synthesis in glutathione-depleted RBCs, at a rate of 0.206 ± 0.036 μmol (L RBC)?1min?1 only 20% of the maximum rate obtained with cysteine or N-acetylcysteine. In plasma-free solutions, N-acetylcysteine provides cysteine by intracellular deacetylation but to achieve maximum rates of glutathione synthesis by this process in vivo, plasma N-acetylcysteine concentrations would have to exceed 1.0 mM, which is therapeutically unattainable. 1H-NMR experiments demonstrated that redox exchange reactions between NAC and cystine produce NAC-cysteine, NAC-NAC and cysteine. Calculations using a mathematical model based on these results showed that plasma concentrations of N-acetylcysteine as low as 100 μM, that are attainable therapeutically, could potentially react with plasma cystine to produce ~50 μM cysteine, that is sufficient to produce maximal rates of glutathione synthesis. We conclude that the mechanism of action of therapeutically administered N-acetylcysteine is to reduce plasma cystine to cysteine that then enters the RBC and sustains glutathione synthesis.  相似文献   

15.
Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional (1)H-(13)C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.  相似文献   

16.
Glutathione is the most abundant non-protein thiol in the cell, with roles in cell cycle regulation, detoxification of xenobiotics, and maintaining the redox tone of the cell. The glutathione content is controlled at several levels, the most important being the rate of de novo synthesis, which is mediated by two enzymes, glutamate cysteine ligase (GCL), and glutathione synthetase (GS), with GCL being rate-limiting generally. The GCL holoenzyme consists of a catalytic (GCLC) and a modulatory (GCLM) subunit, which are encoded by separate genes. In the present study, the signaling mechanisms leading to de novo synthesis of GSH in response to physiologically relevant concentrations of 4-hydroxy-2-nonenal (4HNE), an endproduct of lipid peroxidation, were investigated. We demonstrated that exposure to 4HNE resulted in increased content of both Gcl mRNAs, both GCL subunits, phosphorylated JNK1 and c-Jun proteins, as well as Gcl TRE sequence-specific AP-1 binding activity. These increases were attenuated by pretreating the cells with a novel membrane-permeable JNK pathway inhibitor, while chemical inhibitors of the p38 or ERK pathways were ineffective. These data reveal that de novo GSH biosynthesis in response to 4HNE signals through the JNK pathway and suggests a major role for AP-1 driven expression of both Gcl genes in HBE1 cells.  相似文献   

17.
Erythrocyte glutathione concentration increases dramatically in sheep when they become anemic. To determine the mechanism of this change in glutathione control, we measured the enzymes and substrates necessary for glutathione control, we measured the enzymes and substrates necessary for glutathione synthesis after acute blood loss in both low- (gamma-glutamylcysteine synthetase deficient) and high-glutathione sheep. Erythrocyte glutamate, ATP, and glycine increased dramatically in all sheep. Erythrocyte gamma-glutamylcysteine synthetase increased slowly and seemed unrelated to changes in glutathione. Erythrocyte glutathione synthetase and cysteine and plasma cysteine, glutamate and glycine did not change significantly. Apparently substrate concentrations may be important in regulating erythrocyte glutathione levels.  相似文献   

18.
Cell-free protein synthesis systems are powerful tools for protein expression, and allow large amounts of specific proteins to be obtained even if these proteins are detrimental to cell survival. In this report we describe the effect of cysteine on cell-free protein synthesis. The addition of cysteine caused a 2.7-fold increase in the level of synthesized glutathione S-transferase (GST). Moreover, the levels of sulfhydryl group reductants, including reduced glutathione and dithiothreitol (DTT), were increased 1.9- and 1.7-fold, respectively, whereas levels of the disulfide dimers, cystine and oxidized glutathione, were suppressed 87% and 66%, respectively. These trends were also observed for green fluorescent protein (GFP) expression. The addition of cysteine competitively reversed the inhibitory effect of cystine on protein expression. These results suggest that the sulfhydryl group in cysteine plays a crucial role in enhancing protein synthesis, and that the addition of excess cysteine could be a convenient and useful method for improving protein expression.  相似文献   

19.
Abstract: The intracellular content of glutathione in astroglia-rich primary cultures derived from the brains of newborn rats was measured to be 32.1 ± 5.4 nmol/mg of protein. During a 24-h incubation in a minimal medium lacking amino acids and glucose, the content of glutathione in these cultures was reduced to 52% of the original content. On refeeding of glucose, glutamate, glycine, and cysteine, glutathione was resynthesized. A maximal content of glutathione was found 4 h after refeeding, exceeding the amount of glutathione of untreated cultures by 72%. Maximal glutathione synthesis was observed only if glutamate, cysteine, and glycine were present. If successively each one of these amino acids was made limiting for the synthesis of glutathione, half-maximal contents of glutathione were found at 0.2 m M glutamate, 20 µ M cysteine, or 10 µ M glycine. Replacement of glutamate or glycine by other amino acids revealed the potential of astroglial cells to convert glutamine, aspartate, asparagine, proline, and ornithine into glutamate, and serine into glycine. These results demonstrate that the concentration of intracellular glutathione can serve as an indicator for the presence of metabolic pathways of amino acids in cultured cells.  相似文献   

20.
Kim YG  Kim SK  Kwon JW  Park OJ  Kim SG  Kim YC  Lee MG 《Life sciences》2003,72(10):1171-1181
The changes in amino acid concentrations and transsulfuration enzyme activities in liver were investigated after 4-week fed on 23% casein diet (control group) and 5% casein diet without (protein-calorie malnutrition, PCM group) or with (PCMC group) oral administration of cysteine, 250 mg/kg (twice daily, starting from the fourth week) using rats as an animal model. By supplementation with cysteine in PCM rats (PCMC group), cysteine level was elevated almost close to the control level, and glutathione (GSH), aspartic acid and serine levels were restored greater than the control levels. The measurement of transsulfuration enzyme activities exhibited that gamma-glutamylcysteine ligase (gamma-GCL) activity was up-regulated in rats with protein restriction (PCM group), and cysteine supplementation (PCMC group) down-regulated to the control level. One-week supplementation of cysteine (PCMC group) significantly down-regulated the cysteine sulfinate decarboxylase activity. These results indicate that the availability of sulfur amino acid(s) especially cysteine appears to play a role in determining the flux of cysteine between cysteine catabolism and GSH synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号