首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Nuclear accumulation of the complex between beta-catenin and proteins of the T-cell factor (Tcf) family is a hallmark of many cancers. Targeting this interaction for drug development is complicated by the fact that E-cadherin and adenomatous polyposis coli (APC) bind to overlapping sites on beta-catenin. Inhibiting their interactions might actually promote tumor growth. To identify selective beta-catenin binding hot spots of Tcf4, E-cadherin, and APC, array technology with peptides of up to 53 amino acids length was used. Interactions were monitored by a quantitative fluorescent readout, which was shown to represent a monitor of true equilibrium binding constants. We identified minimal binding motifs in the beta-catenin ligands and showed that most of the 15-mer and 20-mer repeats of APC did not interact, at least when non-phosphorylated, and defined a consensus binding motif also present in APC. We confirmed previously found hot spots and identified new ones. The method allowed us to locate a hydrophobic pocket that was relevant for the Tcf, but not the E-cadherin interaction, and would thus constitute an ideal drug target site.  相似文献   

3.
The interaction of beta-catenin with T-cell factor (Tcf) 4 plays a central role in the Wnt signaling pathway and has been discussed as a possible site of intervention for the development of anti-cancer drugs. In this study, we performed Ala-scanning mutagenesis of all Tcf4 residues in the Tcf-beta-catenin interface and studied the binding energetics of these mutants using isothermal titration calorimetry. Binding of Tcf4 was found to be highly cooperative. Single site mutations of most Tcf4 residues resulted in a significant reduction in binding enthalpies but in similar binding constants as compared with wild type Tcf4. Interestingly, this was also true for residues that are disordered in the reported crystal structures. The mutation D16A caused the largest reduction in binding constant (50-fold) accompanied by a large unfavorable enthalpy change (DeltaDeltaHobs) of +8 kcal/mol at 25 degrees C. In contrast, the mutation of the Tcf residues Glu24 and Glu28, which have been proposed as an interaction hot spot due to their location in a field of strong positive electrostatic potential on the beta-catenin surface (charge button), resulted only in a significant reduction of binding enthalpies, which were largely compensated for by unfavorable entropic contributions to the binding. Other mutations that significantly reduced Tcf binding constants were D11A and alanine mutations of the hydrophobic residues Leu41, Val44, and Leu48. The measured thermodynamic data are discussed with the available structural information of Tcf-beta-catenin crystal structures and allow us to propose possible sites for development of Tcf antagonists.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Crystal structure of a beta-catenin/Tcf complex   总被引:17,自引:0,他引:17  
Graham TA  Weaver C  Mao F  Kimelman D  Xu W 《Cell》2000,103(6):885-896
The Wnt signaling pathway plays critical roles in embryonic development and tumorigenesis. Stimulation of the Wnt pathway results in the accumulation of a nuclear beta-catenin/Tcf complex, activating Wnt target genes. A crystal structure of beta-catenin bound to the beta-catenin binding domain of Tcf3 (Tcf3-CBD) has been determined. The Tcf3-CBD forms an elongated structure with three binding modules that runs antiparallel to beta-catenin along the positively charged groove formed by the armadillo repeats. Structure-based mutagenesis defines three sites in beta-catenin that are critical for binding the Tcf3-CBD and are differentially involved in binding APC, cadherin, and Axin. The structural and mutagenesis data reveal a potential target for molecular drug design studies.  相似文献   

12.
13.
The interaction of co-stimulatory molecules on T cells with B7 molecules on antigen presenting cells plays an important role in the activation of naive T cells. Consequently, agents that disrupt these interactions should have applications in treatment of transplant rejection as well as autoimmune diseases. To this end, specific small molecule inhibitors of human B7.1 were identified and characterized. These compounds inhibit the binding of B7.1 to both CD28 and CTLA4. Both classes of compounds appear to bind the same site, a relatively small portion of the GFCC'C" face of the N-terminal V-set domain of human B7.1, not present in the homologous B7.2 or even mouse B7.1. This site may represent a rare hot spot for small molecule antagonist design of inhibitors of cell-cell interactions, whose ligands may yield leads for the development of novel immunomodulatory medicines.  相似文献   

14.
15.
16.
17.
18.
19.
Functional activation of beta-catenin/Tcf signaling plays an important role in early events in carcinogenesis. We examined the effect of naringenin against beta-catenin/Tcf signaling in gastric cancer cells. Reporter gene assay showed that naringenin inhibited beta-catenin/Tcf signaling efficiently. In addition, the inhibition of beta-catenin/Tcf signaling by naringenin in HEK293 cells transiently transfected with constitutively mutant beta-catenin gene, whose product is not phosphorylated by GSK3beta, indicates that its inhibitory mechanism was related to beta-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed immunofluorescence, Western blot, and EMSA. As a result, our data revealed that the beta-catenin distribution and the levels of nuclear beta-catenin and Tcf-4 proteins were unchanged after naringenin treatment. Moreover, the binding activities of Tcf complexes to consensus DNA were not affected by naringenin. Taken together, these data suggest that naringenin inhibits beta-catenin/Tcf signaling in gastric cancer with unknown mechanisms.  相似文献   

20.
TCF transcription factors: molecular switches in carcinogenesis.   总被引:16,自引:0,他引:16  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号