首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two benzophenone O-arabinosides and a chromone from Hypericum annulatum   总被引:1,自引:0,他引:1  
Two benzophenone O-arabinosides, annulatophenonoside (1) and acetylannulatophenonoside (2) were isolated from the methanol extract of the herb of Hypericum annulatum. The structures of the benzophenones were established as 2-O-alpha-L-arabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone (1) and 2-O-alpha-L-3"-acetylarabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone (2) based on spectral and chemical evidence. A chromone, 5,7-dihydroxy-3-methylchromone (3) was isolated from the chloroform extract. Although it has been previously synthesized it is encountered in a plant source for the first time. Co-occurrence of the two new benzophenone O-arabinosides along with the biogenetically related 1,5,7-trihydroxy-3-methoxyxanthone was not found.  相似文献   

2.
Propolis has been extensively used in folk medicine for the management of a wide spectrum of disorders. In a previous study, we demonstrated the protective effect of the aqueous propolis extract (APE) against the injurious effects of carbon tetrachloride (CCl4) on hepatocytes in vitro. The present investigation was carried out to show whether the hepatoprotective effect of the extract could also be manifested in vivo. Rats were given APE orally for 14 consecutive days, before being subjected to a single intraperitoneal injection of CCl4. One day after the CCl4 injection, the animals were sacrificed, hepatocytes were isolated and liver homogenates were prepared for the assessment of liver injury. In isolated hepatocytes, APE afforded protection against CCl4-induced injury as manifested by a decrease in the leakage of the cytosolic enzyme lactate dehydrogenase (LDH), decreased generation of lipid peroxide and maintenance of cellular reduced glutathione (GSH) content. In principle, similar findings were observed in liver homogenates. The present findings show that APE has in vivo hepatoprotective potential which could be attributed at least in part to the maintenance of cellular GSH content. The latter effect seems to play an important role in conserving the integrity of biomembranes as it was associated with a decrease in lipid peroxidation and reduced leakage of cytosolic LDH.  相似文献   

3.
Dimerumic acid (DMA) is contained in Monascus anka and Monascus pilosus fermented products. The purpose of this study was to evaluate the effect of DMA against salicylic acid (SA)- and tert-butylhydroperoxide (t-BHP)-induced oxidative stress and cytotoxicity in the liver, using rat liver microsomes and isolated rat hepatocytes. DMA was extracted from monascus-garlic-fermented extract using M. pilosus. In rat liver microsomes, 1 microM DMA decreased SA-induced lipid peroxidation but did not affect the production of the oxidative metabolite of SA via CYP. In isolated rat hepatocytes, 1 microM DMA decreased SA-induced lipid peroxidation and chemiluminescence (CL) generation and the intracellular glutathione-reduced form/oxidized form (GSH/GSSG) ratio in the presence of 1 microM DMA was higher than that without DMA; however, 100 microM DMA suppressed the leakage of lactate dehydrogenase (LDH). On the other hand, t-BHP-induced lipid peroxidation, CL generation, and LDH leakage were prevented by 100 microM DMA. Thus, DMA showed an antioxidative effect in hepatocytes and protected against hepatotoxicity by suppressing oxidative stress without affecting CYP enzymes.  相似文献   

4.
The metabolism and toxicity of formaldehyde (CH2O) in isolated rat hepatocytes was found to be dependent upon the intracellular concentration of glutathione (GSH). Using hepatocytes depleted of GSH by treatment with diethyl maleate (DEM), the rate of CH2O (5.0 mM) disappearance was significantly decreased. Formaldehyde decreased the concentration of GSH in hepatocytes, probably by the extrusion of the CH2O-GSH adduct, S-hydroxymethylglutathione. Formaldehyde toxicity was potentiated in cells pretreated with 1.0 mM DEM as measured by the loss of membrane integrity (NADH stimulation of lactate dehydrogenase (LDH) activity) and an increase in lipid peroxidation (formation of thiobarbituric acid-reactive compounds). This potentiation of toxicity was both CH2O concentration-dependent and time-dependent. There was an excellent correlation between the increase in lipid peroxidation and the decrease in cell viability. L-Methionine (1.0 mM) both protected the cells from toxicity caused by the combination of 8.0 mM CH2O and 1.0 mM DEM and increased the cellular GSH concentration. The antioxidants, ascorbate, butylated hydroxytoluene (BHT) and alpha-tocopherol (10, 25 and 125 microM), all exhibited dose-dependent protection against toxicity produced by 8.0 mM CH2O and 1.0 mM DEM. At toxic concentrations of CH2O (10.0-13.0 mM), administered by itself, lipid peroxidation did not increase concomitantly with the decrease in cell viability and the addition of antioxidants (125 microM) did not influence CH2O toxicity. These results suggest that CH2O toxicity in GSH-depleted hepatocytes may be mediated by free radicals as a result of the effect of CH2O on a critical cellular pool of GSH. However, cells with normal concentrations of GSH are damaged by CH2O by a different mechanism.  相似文献   

5.
1. In liver microsomes from hyperthyroid rats NADPH-dependent lipid peroxidation induces a hydroperoxide formation 56% higher than that in euthyroid ones. 2. The addition of 5 microM Fe2+ (or Fe3+) strongly decreases the hydroperoxide level in favour of that of TBA-reactive substances. Higher iron concentrations (30 microM) have no significant effect. 3. In hepatocytes from hyperthyroid rats CCl4-induced lipid peroxidation produces an amount of TBA-reactive substances four times higher than that in those from euthyroid rats. 4. In the liver of hyperthyroid rats a GSH concentration decrease (by about 35%) is found while the opposite occurs in the blood of the same animals where GSH increases 2.5 times. 5. It is shown that in the liver of hyperthyroid rats, besides higher lipid peroxidation, a more active defense mechanism is operating since both glutathione peroxidase and glutathione reductase specific activities are higher than in euthyroid rats.  相似文献   

6.
The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3.radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals (Dambrauskas, T., and Cornish, H. H. (1970) Toxicol. Appl. Pharmacol. 17, 83-97; Long, R.M., and Moore, L. (1988) Toxicol. Appl. Pharmacol. 92, 295-306) and are toxic to cultured hepatocytes (Long, R. M., and Moore, L. (1988) Toxicol. Appl. Pharmacol. 92, 295-306). The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4. Although EDTA (100 microM) decreased the CCl4 inhibition, the metal-complexing agents deferoxamine (100 microM) and diethyldithiocarbamate (100 microM) had no effect on the inhibition of the pump. Similarly, the reactive oxygen scavengers catalase (65 micrograms/ml), superoxide dismutase (15 micrograms/ml), mannitol (10 mM), and dimethyl sulfoxide (50 mM) also had no effect. Our results suggest that the initial toxicity of CCl4 for the Ca2+ pump results from the metabolism of CCl4 to the CCl3. radical. This radical then directly oxidizes the Ca2+ pump, leading to decreased Ca2+ uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Carbon tetrachloride (CCl(4)) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl(4)-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation, and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl(4) with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl(4) exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl(4) and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl)ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl(4) is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl(4).  相似文献   

8.
A series of 3,7-disubstituted-2(3',4'-dihydroxyphenyl) flavones has been studied as potential cardioprotective agents in doxorubicin antitumor therapy. The influence of substituents on the 3 and 7 position of the flavone nucleus on antioxidant activity cytotoxicity and cardioprotective properties was explored to improve the activity of our lead compound 7-monohydroxyethylrutoside. In the protection against Fe(2+)/vitamin C-induced microsomal lipid peroxidation (LPO assay), IC(50) values ranged from 0.2 to 37 microM. In general, the 3-substituted flavones were the most potent compounds in this assay. The cytotoxicity of the new compounds was tested (up to 250 microM) in hepatocytes. LDH leakage ranged from 2.6-29.2%, whereas the GSH concentrations decreased to 87.3-41.3%. Only four compounds out of this series protected the isolated mouse left atrium against doxorubicin-induced toxicity. Because of the positive inotropic effect of 8d (N-(3-(3',4'-dihydroxyflavon-7-yl)oxypropyl)-N,N,N-trimethylammonium chloride) and 10c (3-hydroxyethoxy-7,3',4'-trihydroxyflavone) on the atrium, compounds 9i (3',4'-dihydroxy-3-glucosylflavone) and 10d (N-(3-(7,3',4'-trihydroxyflavon-3-yl)oxypropyl)-N,N,N-trimethylammonium chloride) were selected to be evaluated as cardioprotective agents in vivo.  相似文献   

9.
Salicylic acid is a widely used nonsteroidal anti-inflammatory drug (NSAID). But it is known to cause serious liver damage occasionally. Mitochondrial dysfunction and oxidative stress are predicted to be the major factors of salicylic acid-induced liver injury. We investigated the influence of salicylic acid on ATP contents, oxygen consumption and lipid peroxidation in the presence of the same concentration of salicylic acid. Leakage of lactate dehydrogenase (LDH) was significantly higher in the presence of 5 mM salicylic acid than in its absence. Salicylic acid-induced thiobarbituric acid-reactive substance (TBARS) formation and spontaneous chemiluminescence (CL) in rat hepatocytes, whereas antioxidants, such as promethazine (PMZ) and N,N-diphenylphenylenediamine (DPPD), suppressed both TBARS formation and LDH leakage. TBARS formation in rat liver microsomes was suppressed by diethyldithiocarbamate (a specific inhibitor of cytochrome P450 (CYP)2E1) and diclofenac (a specific inhibitor of CYP2C11). These results suggest that salicylic acid-induced lipid peroxidation was related to oxidative metabolism mediated by CYP2E1 and CYP2C11.On the other hand, 5 mM salicylic acid induced a drastic decrease of ATP contents in rat isolated hepatocytes. Furthermore, mitochondrial respiration control ratio (RC ratio), calculated by State 3/State 4 also decreased with the increase of salicylic acid concentration. These findings suggest that salicylic acid would trigger mitochondrial dysfunction and cause ATP decrease, leading to lethal liver cell injury by lipid peroxidation, although this hypothesis remains to be elucidated in vivo.  相似文献   

10.
采用大鼠离体肝细胞原代培养24h,并利用四氯化碳CCl4造成急性肝细胞损伤模型,检定15-甲基-前列腺素F2α(15-Mt-PGF2α)对肝细胞损伤的影响。结果表明:(1)15-Mt-PGF2α可显著降低中毒肝细胞脂质过氧化物水平,抑制肝细胞脂质过氧化,并降低谷丙转氨酶(GPT)和谷草转氨酶(GOT)水平,稳定脂质膜。(2)显著促进中毒肝细胞RNA和DNA的合成。(3)超微结构证实15-Mt-PGF2α能减轻CCl4对肝细胞脂质膜,染色质,线粒体,内质网和核蛋白体的损害。  相似文献   

11.
An oxystat system is described which is capable of maintaining steady-state oxygen partial pressures (PO2) at levels between 0.1 and 300 mm Hg for hours or even days in incubations of respiring cells. The system was used to study effects of the hepatotoxin carbon tetrachloride (CCl4) on lipid peroxidation and cell viability in isolated hepatocytes from phenobarbital-pretreated rats at various steady-state PO2. At PO2 below 35 mm Hg, with a maximum effect at 7 mm Hg, CCl4 induced an immediate lipid peroxidation, the rate of which slowed down during further incubation. AT PO2 between 35 and 70 mm Hg, CCl4 initially induced only slight lipid peroxidation, while there was a significant increase in lipid peroxidation after approximately 30 min. At PO2 above 100 mm Hg, no lipid peroxidation was induced by CCl4. At PO2 of 70 mm Hg and below, with the maximum effect at 3 mm Hg, CCl4 also induced marked losses of cell viability. Under anaerobic conditions and at PO2 greater than 70 mm Hg, CCl4 was without effect on the viability of the liver cells. Cells isolated from the pericentral area of the liver lobule showed more lipid peroxidation and loss of cell viability than cells from the periportal area of the lobule. These results provide further evidence for the decisive role of lipid peroxidation, preferentially induced at low PO2, in CCl4 liver injury.  相似文献   

12.
Recent findings have suggested that oxidative damage might contribute to the cytotoxicity and carcinogenicity of aflatoxin B1 (AFB1). Salvia miltiorrhiza (Sm), a herbal plant that has been used extensively in traditional Chinese medicine for treating cardiovascular and liver diseases, is believed to have some antioxidative capabilities. In this study, the protective effect of Sm against AFB1-induced cytotoxicity was investigated in cultured primary rat hepatocytes. AFB1-induced cytotoxicity and lipid peroxidation (LPO) were estimated by determination of lactate dehydrogenase (LDH) leakage and thiobarbituric acid reactive substances (TBARS) formation, respectively. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA). In addition, changes of intracellular glutathione (GSH) content were also studied. Results showed that Sm was able to suppress the LDH leakage induced by AFB1 in a dose-dependent manner. A dose-dependent inhibitory effect of Sm on AFB1-induced LPO was also found in hepatocytes treated with Sm. It was further observed that Sm produced an inhibitory effect on ROS formation caused by AFB1. Concomitantly, the GSH content in Sm-treated groups increased substantially compared to those without Sm treatment. These findings suggest that Sm can inhibit the cytotoxicity of AFB1 through decreasing ROS formation, inhibiting LPO and preventing GSH depletion. The major component of the aqueous extract of Sm was identified by using high performance liquid chromatography (HPLC), proton magnetic resonance (1H-NMR) and mass spectrum (MS). Analytical results suggested that D(+)β3,4-dihydroxyphenol lactic acid (DA) is the main compound of the aqueous extract of Sm.  相似文献   

13.
Treatment of isolated hepatocytes from 3-methylcholanthrene induced rats with 1 mM paracetamol has been found to greatly decrease cellular reduced glutathione (GSH) content and to promote lipid peroxidation, evaluated as malonaldehyde (MDA) production and conjugated diene absorbance. A similar dosing of hepatocytes from phenobarbital-induced or normal rats is ineffective in that respect. On the other hand, the aspecific stimulation of the cytochrome P-450-mediated paracetamol activation due to acetone addition further increases GSH depletion as well as MDA production.Isolated hepatocytes with basal low GSH content are also more susceptible to paracetamol-induced lipid peroxidation, indicating that the rate of the drug metabolism and the cellular GSH content are critical factors in the determination of such peroxidative attack.In isolated mouse liver cells paracetamol does not require preliminary cytochrome P-450 induction to stimulate MDA formation, even at concentrations ineffective in rat cells.However, 5 mM paracetamol, despite a great depletion of cellular GSH content, does not promote MDA formation either in the rat or in the mouse hepatocytes. This effect may be due to the ability of paracetamol to scavenge lipid peroxides under defined conditions, as tested in various lipid peroxidizing systems.Membrane leakage of lactate dehydrogenase (LDH) is evident in paracetamol treated cells undergoing lipid peroxidation, but not when MDA formation is inhibited by high doses of the drug or by addition of antioxidants such as α-tocopherol and diphenylphenylenediamine (DPPD).Nevertheless in these conditions the covalent binding of activated paracetamol metabolites is not affected, suggesting that lipid peroxidation might play a role in the pathogenesis of liver damage following paracetamol overdose.  相似文献   

14.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   

15.
The peroxidation of rat liver microsomal lipids is stimulated in the presence of iron by the addition of NADPH or ascorbate and is inhibited by the addition of glutathione (GSH). The fate of GSH and the oxidative modification of proteins under these conditions have not been well studied. Rat liver microsomes were incubated at 37 degrees C under 95% O2:5% CO2 in the presence of 10 microM ferric chloride, 400 microM ADP, and either 450 microM ascorbic acid or 400 microM NADPH. Lipid peroxidation was assessed in the presence 0, 0.2, 0.5, 1, or 5 mM GSH by measuring thiobarbituric acid reactive substance (TBARS) and oxidative modification of proteins by measuring protein thiol and carbonyl groups. GSH inhibited TBARS and protein carbonyl group formation in both ascorbate and NADPH systems in a dose-dependent manner. Heat denaturing of microsomes or treatment with trypsin resulted in the loss of this protection. The formation of protein carbonyl groups could be duplicated by incubating microsomes with 4-hydroxynonenal. Ascorbate-dependent peroxidation caused a loss of protein thiol groups which was diminished by GSH only in fresh microsomes. Both boiling and trypsin treatment significantly decreased the basal protein thiol content of microsomes and enhanced ascorbate-stimulated lipid peroxidation. Protection against protein carbonyl group formation by GSH correlated with the inhibition of lipid peroxidation and appeared not to be due to the formation of the GSH conjugate of 4-hydroxynonenal as only trace amounts of this conjugate were detected. Ninety percent of the GSH lost after 60 min of peroxidation was recoverable as borohydride reducible material in the supernatant fraction. The remaining 10% could be accounted for as GSH-bound protein mixed disulfides. However, only 75% of the GSH lost during peroxidation appeared as glutathione disulfide, suggesting that some was converted to other soluble borohydride reducible forms. These data support a role for protein thiol groups in the GSH-mediated protection of microsomes against lipid peroxidation.  相似文献   

16.
Diethyl maleate (DEM) (5 mM) and ethyl methanesulfonate (EMS) (35 mM) treatments rapidly depleted cellular reduced glutathione (GSH) below detectable levels (1 nmol/10(6) cells), and induced lipid peroxidation and necrotic cell death in freshly isolated rat hepatocytes. In hepatocytes incubated with 2.5 mM DEM and 10 mM EMS, however, the complete depletion of cellular GSH observed was not sufficient to induce lipid peroxidation or cell death. Instead, DEM- and EMS-induced lipid peroxidation and cell death were dependent on increased reactive oxygen species (ROS) production as measured by increases in dichlorofluorescein fluorescence. The addition of antioxidants (vitamin E succinate and deferoxamine) prevented lipid peroxidation and cell death, suggesting that lipid peroxidation is involved in the sequence of events leading to necrotic cell death induced by DEM and EMS. To investigate the subcellular site of ROS generation, the cytochrome P450 inhibitor, SKF525A, was found to reduce EMS-induced lipid peroxidation but did not protect against the loss of cell viability, suggesting a mitochondrial origin for the toxic lipid peroxidation event. In agreement with this conclusion, mitochondrial electron transport inhibitors (rotenone, thenoyltrifluoroacetone and antimycin A) increased EMS-induced lipid peroxidation and cell death, while the mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, blocked EMS- and DEM-mediated ROS production and lipid peroxidation. Furthermore, EMS treatment resulted in the significant loss of mitochondrial alpha-tocopherol shortly after its addition, and this loss preceded losses in cellular alpha-tocopherol levels. Treatment of hepatocytes with cyclosporin A, a mitochondrial permeability transition inhibitor, oxypurinol, a xanthine oxidase inhibitor, or BAPTA-AM, a calcium chelator, provided no protection against EMS-induced cell death or lipid peroxidation. Our results indicate that DEM and EMS induce cell death by a similar mechanism, which is dependent on the induction of ROS production and lipid peroxidation, and mitochondria are the major source for this toxic ROS generation. Cellular GSH depletion in itself does not appear to be responsible for the large increases in ROS production and lipid peroxidation observed.  相似文献   

17.
G R Haenen  A Bast 《FEBS letters》1983,159(1-2):24-28
Glutathione (GSH) protects rat liver microsomes against ascorbic acid (0.2 mM)/ferrous iron (10 microM)-induced lipid peroxidation for some time. The inhibitory effect of GSH is concentration-dependent (0.1-1.0 mM). Our data suggest that GSH acts by preventing initial radical formation rather than via radical scavenging or GSH--peroxidase activity. A labile GSH-dependent factor is involved in the inhibition of microsomal lipid peroxidation by GSH, inasmuch as heating the microsomes abolishes the GSH effect. We found that besides heating, lipid peroxidation also destroys the GSH-dependent factor. Consequently, continuous radical stress will produce lipid peroxidation, despite the presence of GSH. Moreover, a detrimental effect of in vivo-induced lipid peroxidation (CCl4-treatment) on the GSH-dependent factor was observed. The implications of the present data for the genesis of and the protection against peroxidative damage are discussed.  相似文献   

18.
Mice were administered a single dose of carbon tetrachloride (CCl(4)) to induce acute liver injury. We found that lactate dehydrogenase (LDH) and glutamic pyruvic transaminase (GPT) levels in serum, as well as the level of thiobarbituric acid reaction substances (TBARS) in liver homogenate increased significantly in a manner both dose dependent and time dependent after CCl(4) administration. Such results suggest that the liver is susceptible to CCl(4) treatment and that lipid peroxidation is associated with CCl(4)-induced liver injury. The spin-trapping electron paramagnetic resonance (EPR) method was used to detect nitric oxide (NO) level in liver. The chemiluminescence method was also employed to measure the NO(2)(-)/NO(3)(-) concentration in serum. The NO levels in liver tissues and NO(2)(-)/NO(3)(-) concentration in serum were found to decrease significantly both in a dose-dependent manner and in time course after CCl(4) treatment. The nitric oxide synthase (NOS) II activity in the liver, in contrast, was found to increase significantly. Our study suggests that not only should the expression of NOS be analyzed but NO organ and blood concentration must be measured in the study of diseases involving nitric oxide. L-arginine treatment had no significant effect on the liver function of CCl(4)-treated mice. It was found that NO donor sodium nitroprusside (SNP; 50 or 100 microg/kg) treatment resulted in decreases of LDH, GPT, and TBARS levels, leading to a protective effect on CCl(4)-treated mice. On the other hand, N(G)-nitro-L-arginine methyl ester (L-NAME, 100 or 300 mg/kg) treatment caused more severe liver damage. Moreover, we have found in an in vitro EPR study that SNP could scavenge lipid peroxyl radical LOO&z.rad;. The above results together suggest that NO may protect CCl(4)-induced liver injury through scavenging lipid radical, inhibiting the lipid peroxidation chain reaction. On the basis of our analysis, we put forth two explanations for the stated discrepancy between NOS II and NO production: (i) NO was used up gradually in terminating lipid peroxidation and (ii) NADPH was depleted (on the basis of correlation evidence only).  相似文献   

19.
Two benzophenones, hypericophenonoside (1) and annulatophenone (2) were isolated from the methanol extract of the herb of Hypericum annulatum. The structures of the benzophenones were established as 2'-O-beta-D-glucopyranosyl-2,4,5',6-tetrahydroxy benzophenone (1) and 2,3',5',6-tetrahydroxy-4-methoxybenzophenone (2) based on spectral and chemical evidence. Hypericophenonside is the second benzophenone O-glycoside found in nature. Acid and enzymatic hydrolysis of (1) led directly to the formation of 1,3,7-trihydroxyxanthone (gentisein). This fact confirmed the hypothesis that some xanthones could be formed in plants by dehydration of 2,2'-dihydroxybenzophenones, and the intermediate precursors appear to be benzophenone O-glycosides ortho to the carbonyl function.  相似文献   

20.
During CCl4-induced lipid peroxidation GSH content in total homogenate from rat liver falls very rapidly in the first 30 min. of incubation "in vitro". CCl4 does not enhance the decrease in total glutathione (TG) during the incubation time, so GSH loss is mainly due to its oxidation to GSSG. On the contrary PG and EDTA, two substances decreasing lipid peroxidation rate, are able to decrease GSH oxidation, without affecting TG content. At 25 degrees C EDTA and PG completely prevent GSH decrease at pH 7.4, while at pH 6 PG affords only a partial prevention. At 37 degrees C both compounds are able to limit GSH decrease at a large extent. Lipid peroxidation seems to have a great importance in the kinetics of GSH decrease and GSSG formation, at least "in vitro". It is noteworthy that PG which inhibits lipid peroxidation stimulated by CCl4 is also able to limit the high GSH loss observed in the homogenates incubated in the presence of halogeno-alkane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号