首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The control of metallothionein (MT) synthesis was investigated in freshly prepared rat hepatocytes in experiments of short-term duration. Viability and metabolic function were maintained in incubations of 6-h duration. MT synthesis was measurable in hepatocytes from fed rats at Zn concentrations down to 1 μM. Zn and dexamethasone induced concentration-dependent increases in the synthesis of MT with maximal increases above the 5-h control of 3.2- and 2.5-fold, respectively. Zn induction of MT was first measurable at 2 h and was inhibited by actinomycin C. Although initial (0 h) MT concentrations in hepatocytes from fasted rats were double those from fed rats, after 6-h incubation in the presence of 50 μM Zn, the fasted rat hepatocytes showed only half the MT concentrations of the fed rat hepatocytes. Glucagon and interleukin-6 (IL-6) were less effective inducers and increased MT synthesis by 28 and 17%, respectively. IL-6 (100 U/mL) was found to have an additive effect on MT synthesis above that of Zn alone (1–50 μM) or Zn plus dexamethasone (1 μM). A supernatant from LPS-stimulated macrophages increased MT synthesis by 40%. The basal MT synthesis was not increased by either tumor necrosis factor-α (TNF-α) or interleukin-1 (IL-1). All incubations were carried out in the presence of RPMI 1640 medium with Hepes (20 mM), bicarbonate (24 mM), and fatty acid-free albumin (FAFA; 0.5% w/v). MT synthesis was also seen using Krebs bicarbonate buffer with glucose (10 mM), Hepes (20 mM), and FAFA (0.5% w/v), and although the level of MT synthesis was less than in RPMI, the increases in concentrations of MT at 5 h were 225, 139, 36 and 20% for Zn, dexamethasone, glucagon, and control, respectively. It is concluded that MT synthesis occurs in freshly prepared hepatocytes and that these cells are responsive to some of the established inducers of MT. This system enables the study of MT synthesis in individual rats in various metabolic and pathological states.  相似文献   

2.
The content of the benzophenones, hypericophenonoside, neoannulatophenonoside, annulatophenonoside, annulatophenone, acetylannulatophenonoside and the xanthone derivative gentisein have been determined in aerial parts, leaves, flowers and stems of Hypericum annulatum Moris. Extraction of samples with methanol by magnetic stirring at room temperature allowed a good recovery of analytes (from 90.70% for gentisein to 103.81% for annulatophenonoside) and the precision of the entire procedure was < 6.05%. The subsequent HPLC separation and quantification was achieved using a Hypersil ODS C18 column and UV detection at 290 nm. The mobile phase comprised methanol and 20 mm potassium dihydrogen phosphate (adjusted to a pH of 3.19 with o-phosphoric acid), and gradient elution mode was applied. The detection limits were 0.03, 0.02 and 0.001 microg/mL for hypericophenonoside, acetylannulatophenonoside and gentisein, respectively. The total amounts of the phenolic compounds assayed ranged from 10.92 mg/g in stems to 82.86 mg/g in leaves. Hypericophenonoside was the dominant benzophenone present in the majority of the plant samples, being present in amounts between 7.54 +/- 0.25 mg/g in stems and 64.22 +/- 2.44 mg/g in leaves. Hypericophenonoside accounted for up to 77.50% of the components found in the leaves, whereas annulatophenonoside (6.29 +/- 0.15 mg/g) and acetylannulatophenonoside (8.95 +/- 0.09 mg/g) were detected in much lower quantities. In contrast to leaves, flowers showed a tendency towards higher contents of gentisein (9.35 +/- 0.07 mg/g) and neoannulatophenonoside (4.72 +/- 0.04 mg/g) than the other parts assayed.  相似文献   

3.
Isolated rat hepatocytes exposed to CCl4 showed a dramatic decrease in [32P] incorporation into proteins which was evident as early as 5 min after the haloalkane addition. DEAE cellulose separation of protein kinases present in both particulated and cytosolic fractions of hepatocytes revealed that only the calcium and phospholipids dependent protein kinase C was affected by the treatment with CCl4, while kinases not requiring these factors for their activity were unmodified. Several 4-hydroxyunsaturated aldehydes known to be produced during CCl4-stimulated lipid peroxidation were found to inhibit protein kinase C at micromolar concentrations, suggesting the possibility that peroxidative events might be responsible for the impairment of protein kinase C during CCl4 intoxication.  相似文献   

4.
Summary The cytochemical localization of alkaline phosphatase activity in foetal rat hepatocytes was examined in relation to the pattern of cell to cell attachment during cell isolation and culture. In foetal hepatocytesin vivo, alkaline phosphatase was exclusively localized on the bile canalicular membrane. In freshly isolated foetal hepatocytes, however, the activity was present in the endoplasmic reticulum, nuclear envelope, Golgi apparatus, tubulo-vesicular organelles, and over the entire plasma membrane. In monolayer cells cultured for one or two days, the activity was localized on the reconstituted bile canalicular membrane, plasma membrane sites adjacent to neighbouring cells and on the bottom surface of the monolayer, but was detected in none of the intracellular organelles. Biochemical alkaline phosphatase activity did not change during isolation of the cells. These results suggest that, in foetal hepatocytes, loss of cell—cell contact may induce a temporal disturbance, or dedifferentiation, in their membrane system.  相似文献   

5.
It was investigated whether rat hepatocytes maintain their plasma membrane specialization (sinusoidal, lateral and bile canalicular sites) and their intracellular polarity (peribiliary region, rich in lysosomes and poor in mitochondria) after isolation. The morphology of the hepatocytes and the cytochemical localization of marker enzymes for the bile canalicular membrane (alkaline phosphatase, adenosine triphosphatase and 5' nucleotidase), for the lysosomes (acid phosphatase) and for the mitochondria (beta-hydroxybutyrate dehydrogenase and succinate dehydrogenase) were studied in situ and directly after isolation using both light and electron microscopy. The morphology of the cells and the cytochemical activity of acid phosphatase, succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase showed that in isolated cells, as in situ, the lysosomes were concentrated in bands, devoid of mitochondria. Unlike in situ the reaction product of alkaline phosphatase, adenosine triphosphatase and 5'nucleotidase was evenly distributed along the entire plasma membrane of the isolated cells. Morphologically, no tight or gap junctions or desmosomes could be detected in the isolated cells, while the plasma membrane appeared to be homogeneously covered with uniform microvilli. In conclusion it can be stated that during isolation the hepatocytes loose their distinct plasma membrane specialization, but maintain their peribiliary region rich in lysosomes and poor in mitochondria.  相似文献   

6.
7.
The effect of carbon tetrachloride on isolated rat hepatocytes   总被引:1,自引:0,他引:1  
Isolated rat hepatocytes were incubated with carbon tetrachloride (CCl4) at a concentration of 0.2 mol CCl4/ml of incubation medium. The ultrastructural alterations and release of lactate dehydrogenase (LDH) and glutamate-oxaloacetate transaminase (GOT), were recorded after different periods of incubation. After 5 min incubation with CCl4, morphological changes observed by electron microscopy, involved the plasma membrane. The endoplasmic reticulum and mitochondria were altered later. These morphological alterations were accompanied by an early release of LDH and GOT into the incubation medium. It is concluded that, in contrast with its in vivo effects, in vitro CCl4 can induced an early morphological alteration of the hepatocyte plasma membrane before damaging the endoplasmic reticulum.  相似文献   

8.
9.
Analysis of the uptake and metabolism of [14C]cysteine in rat liver was undertaken using freshly isolated hepatocytes and hepatocytes maintained in primary culture. The uptake of [14C]cysteine by freshly isolated hepatocytes was by means of both saturable and non-saturable transport systems and the former system was thought to involve facilitated diffusion. The uptake of [14C]cysteine by hepatocytes maintained in primary culture for 24 h also consisted of non-saturated and saturated transport mechanisms. The magnitude of the saturable transport system in cultured hepatocytes was, however, much greater than that found in freshly isolated hepatocytes, and was considered to be operated by active transport. Both freshly isolated and primary cultured hepatocytes had cysteine sulphinic acid decarboxylase activity, but this enzyme activity in the latter cells was noticeably reduced in comparison with that found in freshly isolated hepatocytes. Hepatocytes maintained in primary culture produced not only radiolabelled taurine, but also radiolabelled cysteine sulphinic acid, hypotaurine and alanine when incubated with [14C]cysteine. The present results indicate that cultured hepatocytes actively transport cysteine as well as metabolizing cysteine to taurine via cysteine sulphinic acid and hypotaurine.  相似文献   

10.
An isolated rat hepatocyte preparation was used to study the cellular toxicity of cadmium and the protective effects of metallothionein on cadmium-induced toxicity. Exposure of primary suspension cultures of isolated rat hepatocytes to Cd2+ (0-35.7 microM) for 15 min resulted in a dose-dependent reduction in the synthesis of cellular proteins during a subsequent 6 h incubation. Such inhibition could not be correlated with cellular lethality or gross membrane damage. Pre-induction of metallothionein in hepatocytes by zinc treatment in vivo of donor rats protected hepatocytes in vitro from cadmium-induced inhibition of protein synthesis. The protective effects in zinc-pre-induced hepatocytes are not due to alterations in the level of total cellular cadmium, but could be accounted for by the redistribution of intracellular cadmium in the presence of high levels of zinc-metallothionein. The data suggest that metallothionein exerts its protective effect by a kinetic detoxification mechanism, i.e. a decrease in reactive intracellular cadmium.  相似文献   

11.
Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on the phenol chemical structure.  相似文献   

12.
One- and two-parameter quantitative structure toxicity relationship (QSTR) equations were obtained to describe the cytotoxicity of isolated rat hepatocytes induced by 23 catechols in which LD(50) represents the catechol concentration required to induce 50% cytotoxicity in 2 h. A QSTR equation logLD(50) (microM = - 0.464(+/-0.065) log P + 3.724(+/-0.114) (n = 20, r(2) = 0.740, s(y,x) = 0.372, P < 1 x 10(-6), outliers: 4-methoxycatechol, 3-methoxycatechol, L-dopa) was derived where logP represents octanol/water partitioning. Outliers were determined by adopting a statistical method to standardize the identification of outliers. When pK(a1), the first ionization constant, was considered as a contributing parameter a two-parameter QSTR equation was derived: logLD(50) (microM = - 0.343(+/-0.058) log P - 0.116(+/-0.041) pK(a1)+4.389 (+/-0.315) (n = 22, r(2) = 0.738, s(y,x) = 0.375, P < 0.01, outlier: 4-methoxycatechol). Replacing logP with logD(7.4), the partition coefficient at pH 7.4, improved the first correlation by limiting the outlier to 4-methoxycatechol: logLD(50) (microM)=-0.252(+/-0.039) logD(7.4)+3.168(+/-0.090) (n = 22, r(2) = 0.671, s(y,x) = 0.420, P < 1 x 10(-5). In this study, 4-methoxycatechol (readily autooxidizable) was found to be an outlier for all QSTR equations derived. These findings point to lipophilicity and pK(a1) as two important characteristics of catechols that can be used to predict their cytotoxicity towards isolated rat hepatocytes. The catechols with the higher lipophilicity/distribution coefficient, the lower degree of ionization and the higher pK(a(catechol)) were more toxic towards hepatocytes than the other catechols.  相似文献   

13.
Using hepatocytes in suspension, freshly isolated from adult male fed rats, we studied the acute influence of recombinant human interleukins 1 alpha, 2 and 6 on glycogen and fatty acid metabolism. By far the largest effects were observed with interleukin-1 alpha: short incubations (up to 60 min) sufficed to depress glycogen synthesis in a dose-dependent manner, while the rates of glycogenolysis and glycolysis were increased as indicated by the release of glucose and lactate. Interleukin-6 acted similarly, though being much less effective on a molar basis, whereas interleukin-2 only caused a small increase in lactate production. In hepatocytes from 24h-starved rats interleukin-1 alpha caused a minor stimulation of gluconeogenesis. Although neither fatty acid synthesis nor oxidation of fatty acids in quiescent hepatocytes from fed rats was significantly affected by interleukins, interleukin-1 alpha was able to cause appreciable inhibition of fatty acid synthesis in hepatocytes from regenerating liver (isolated 22h after partial hepatectomy). It is concluded (i) that interleukins, in particular interleukin-1 alpha, acutely promote hepatic glucose release, and (ii) that transition of adult hepatocytes from a quiescent into a proliferatory state allows the occurrence of rapid effects of interleukin-1 alpha on fatty acid metabolism.  相似文献   

14.
1. Suspensions of freshly isolated rat hepatocytes were used to study the effects of native and derivatized lipoproteins on the rate of cholesterogenesis. 2. Short-term incubation of the hepatocytes with a variety of lipoproteins failed to modify the rate of cholesterol synthesis as determined by the incorporation of tritium from tritiated water into cholesterol after separation from other lipids by thin-layer chromatography. 3. Neither an increase in the cholesterol content of the particles (beta-very-low-density lipoproteins) nor derivatization of the lipoproteins (lactosylated-low-density lipoproteins or high-density lipoproteins associated with a tris-galactoside-terminated cholesterol derivative) nor cholesterol-containing liposomes were effective in this respect. 4. Whether this behaviour represents an artefact of the isolated hepatocyte preparation is unknown yet.  相似文献   

15.
We have analysed the effects of natural aliphatic polyamines on hormonal induction of tyrosine aminotransferase (TAT) in suspensions of hepatocytes isolated from adult fed rats. Glucagon or cyclic AMP derivatives (dibutyryl and 8-bromo) used alone caused a 4-5 fold increase in enzyme activity within 4h. This effect was independent of glucocorticoids, which also increased TAT activity (2.5-fold); when combined, the effects of the two inducers were additive. Spermine and putrescine totally inhibited the hormonally-mediated increase in enzyme activity when added at the onset of incubation with the inducers. Furthermore, polyamines could block the hormonal effect at any time during the course of TAT induction, with, however, a 30 min lag period, suggesting that they must enter the cells. Hepatocytes were indeed shown to take up spermine. At low external concentrations (less than 50 microM), an Na+-dependent, saturable and concentrative mechanism was predominant; at high concentrations (greater than 0.5 mM) transport occurred mainly through a non-saturable, Na+-independent mechanism, building up intracellular concentrations slightly lower than those in the medium. Dose-dependence analysis of the polyamine effect on enzyme induction indicated that half-maximal and maximal inhibition occurred with 0.75 mM- and 2.5 mM-spermine respectively, whereas 2.5mM- and 7.5 mM-putrescine were required respectively to obtain similar effects. Spermidine was much less effective and cadaverine had virtually no effect. None of the polyamines affected the rate of decay of TAT, nor did they directly or indirectly cause enzyme inactivation, indicating that a post-translational modification was unlikely to account for the polyamine effects. Similarly, these effects could not be ascribed to a non-specific inhibition of overall protein synthesis. We conclude that, in hepatocytes, polyamines (or their metabolites) directly interfere with one or several steps controlled by hormones in the synthesis of tyrosine aminotransferase.  相似文献   

16.
The determination of the mixed function flavin-containing monooxygenase activity in rat liver and in hepatocytes and their cultures by spectrophotometric measurement of the oxygenation of methimazole is complicated by an inhibition caused by some of the reagents used during this method. Optimal conditions were determined for measuring this enzyme activity in microsomal preparations of rat liver and its hepatocytes. Optimal flavin-containing monooxygenase activities were obtained for measurements performed in a 0.25 M N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine-EDTA buffer at pH 8.7 and at a methimazole concentration of 2 mM. Data are also presented which show that no interferences caused by either cytochrome P450-dependent enzymes or by the reduction of methimazole disulfide by glutathione have to be taken into account when determining methimazole oxygenation. Finally, the above assay was also used to study flavin-containing monooxygenase activity in primary monolayer cultures of hepatocytes for 6 days.  相似文献   

17.
The apparent kinetics of uptake of various model substrates were examined for hepatocytes in suspension and primary culture up to 72 h. The ability of hepatocytes to take up taurocholate and ouabain was decreased in culture. Vmax for uptake of both substrates diminished rapidly with increasing time in culture. An increase in Km was observed in cultures 6 h after plating, but there was no further change with prolongation of culture time. The decrease of uptake of taurocholate and ouabain during culture may be due to the reduction in the number of transport carriers plus a decrease of affinity of the carrier to substrates. The nonsaturable component of cadmium uptake was much reduced in cultured cells compared with the suspensions. The saturable process was lower in 6 h culture but increased to a level comparable with the fresh cells at longer culture time. No significant change was found in the Km between suspensions and cultures. Uptake of alpha-aminoisobutyric acid was greater in culture while that of 3-O-methyl-D-glucose was relatively stable but about one-half that found in cell suspension. Thus, uptake of two substrates, taurocholate and ouabain, is clearly compromised with increasing time in primary culture, while uptake of the other substrates does not reflect such a dramatic decrease. It is therefore apparent that the cell preparation of choice in uptake studies depends on the substrate and the nature of the experiments.  相似文献   

18.
Epidermal growth factor (EGF) has previously been shown to stimulate gluconeogenesis in rat liver by decreasing the activity of pyruvate kinase [(1988) Biochem. J. 255, 361-364]. Here we investigate the mechanism underlying the inactivation of the enzyme. EGF was found to increase the incorporation of phosphate into pyruvate kinase, with maximal phosphorylation achieved only after 10 min in the presence of the growth factor. The increase in phosphorylation was not additive with that caused by cyclic AMP. Phosphoamino acid analysis of pyruvate kinase isolated from cells treated with EGF indicated that EGF increases phosphorylation solely on serine residues. The exact site of EGF-mediated phosphorylation has yet to be identified.  相似文献   

19.
3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N′-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1 mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5–3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5–3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5–3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号