首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The refined solution structure of an 18-residue HIV-1IIIB V3 peptide in complex with the Fv fragment of an anti-gp120 antibody reveals an unexpected type VI beta-turn comprising residues RGPG at the center of a beta-hairpin. The central glycine and proline of this turn are linked by a cis peptide bond. The residues of the turn interact extensively with the antibody Fv. 15N[1H] NOE measurements show that the backbone of the peptide, including the central QRGPGR loop, is well ordered in the complex. The solution structure is significantly different from the X-ray structures of HIV-1MN V3 peptides bound to anti-peptide antibodies. These differences could be due to a two-residue (QR) insertion preceding the GPGR sequence in the HIV-1IIIB strain, and the much longer peptide epitope immobilized by the anti-gp120 antibody.  相似文献   

2.
The amino acid sequence of the principal neutralizing determinant (PND) of 224 cases of human immunodeficiency virus type 1 (HIV-1) was determined and the most frequently occurring sequence was used as a peptide antigen for studying virus-specific antibody responses. In our present study, a linear peptide of the most frequent PND was first synthesized and then oxidized to create a disulfide-bridged loop conformation. Then, in order to construct a macromolecular structure for the purpose of increasing anti-genicity, the synthetic peptide was conjugated to a core peptide. We compared the immunogenicity of the disulfide-bridged loop PND peptide antigen (AG4) and the linear PND peptide antigen (AG5). After immunizing rabbits 5 and 6 times with both peptides, the results obtained using ELISA revealed that AG4 (conformational-loop type) was more capable of inducing a high titer of antigen-specific antibodies than was AG5 (linear type). Despite an amino acid sequence homology of 72%, a 1:8 dilution of serum raised against AG4 inhibited 81.9% of HIV-1IIIB-mediated cell fusion, suggesting that conformational V3 loop peptide is able to elicit an antibody response which is strongly HIV-1-specific.  相似文献   

3.
The model of spatial structure for the principal neutralizing determinant (PND) of the HIV-1 envelope protein gp120 is proposed in terms of two-dimensional nuclear Overhauser effect (NOE) spectroscopy data. To build the model, the NMR-based theoretical conformational analysis of synthetic PND peptides of length 40, 24, and 12 residues is carried out. The modeling of the molecular spatial structures is performed by a new approach to research of conformationally mobile peptides using the algorithms of the restrained molecular mechanics method developed earlier. The following major conclusions are made based on the analysis of the simulated peptide conformations: i) there is not unique PND structure in solution, ii) there are seven different PND structures each of which agrees with the experimental data and stereochemical criteria used in computing its spatial model, iii) the PND is characterized by irregular conformation containing a number of reverse turns, iv) all of the selected conformations are conserved in the Gly-Pro-Gly-Arg-Ala-Phe stretch, the most probable viral immunodominant epitope. These data allow to suppose that binding properties of this site are determined by the structural motif which forms the conformation of a double beta-turn and appears common for all hexapeptide structures.  相似文献   

4.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   

5.
The structural and antigenic properties of a peptide ("CRK") derived from the V3 loop of HIV-1 gp120 protein were studied using NMR and SPR techniques. The sequence of CRK corresponds to the central portion of the V3 loop containing the highly conserved "GPGR" residue sequence. Although the biological significance of this conserved sequence is unknown, the adoption of conserved secondary structure (type II beta-turn) in this region has been proposed. The tendency of CRK (while free or conjugated to protein), to adopt such structure and the influence of such structure upon CRK antigenicity were investigated by NMR and SPR, respectively. Regardless of conjugation, CRK is conformationally averaged in solution but a weak tendency of the CRK "GPGR" residues to adopt a beta-turn conformation was observed after conjugation. The influence of GPGR structure upon CRK antigenicity was investigated by measuring the affinities of two cognate antibodies: "5023A" and "5025A," for CRK, protein-conjugated CRK and gp120 protein. Each antibody bound to all the antigens with nearly the same affinity. From these data, it appears that: (a) antibody binding most likely involves an induced fit of the peptide and (b) the gp120 V3 loop is probably conformationally heterogeneous. Since 5023A and 5025A are HIV-1 neutralizing antibodies, neutralization in these cases appears to be independent of adopted GPGR beta-turn structure.  相似文献   

6.
Human monoclonal antibody (mAb) 447-52D neutralizes a broad spectrum of HIV-1 isolates, whereas murine mAb 0.5beta, raised against gp120 of the X4 isolate HIV-1(IIIB), neutralizes this strain specifically. Two distinct gp120 V3 peptides, V3(MN) and V3(IIIB), adopt alternative beta-hairpin conformations when bound to 447-52D and 0.5beta, respectively, suggesting that the alternative conformations of this loop play a key role in determining the coreceptor specificity of HIV-1. To test this hypothesis and to better understand the molecular basis underlying an antibody's breadth of neutralization, the solution structure of the V3(IIIB) peptide bound to 447-52D was determined by NMR. V3(IIIB) and V3(MN) peptides bound to 447-52D exhibited the same N-terminal strand conformation, while the V3(IIIB) peptide revealed alternative N-terminal conformations when bound to 447-52D and 0.5beta. Comparison of the three known V3 structures leads to a model in which a 180 degrees change in the orientation of the side chains and the resulting one-residue shift in hydrogen bonding patterns in the N-terminal strand of the beta-hairpins markedly alter the topology of the surface that interacts with antibodies and that can potentially interact with the HIV-1 coreceptors. Predominant interactions of 447-52D with three conserved residues of the N-terminal side of the V3 loop, K312, I314, and I316, can account for its broad cross reactivity, whereas the predominant interactions of 0.5beta with variable residues underlie its strain specificity.  相似文献   

7.
The model of locally accurate conformation for the HIV-Thailand principal neutralizing determinant (PND) located within the V3 loop of the virus envelope protein gp120 was built in terms of NMR spectroscopy data. To this end, the NMR-based conformational analysis of synthetic molecule representing the peptide copy of the fragment under study was carried out using the published sequential d connectivity data and values of spin-spin coupling constants. As a result, (i) the local structure for the V3 loop from Thailand isolate was determined, (ii) the conformations of its irregular segments were analyzed, and the secondary structure elements identified, (iii) the ensemble of conformers matching the experimental and theoretical data was derived for the stretch forming the neutralizing epitope of the HIV-Thailand PND, (iv) to estimate the probability of realizing each of these conformers in solution, the results obtained were collated with the X-ray data for corresponding segments in synthetic molecules imitating the central region of the HIV-MN PND as well as for homologous segments 39-44 in Bence-Jonce REI protein (BJRP), 41-46 in immunoglobulin lambda (Ig lambda), and 50-55 in beta-chain of horse hemoglobin (HH), (v) to find the conserved structural motifs inside diverse HIV-1 isolates, the structure determined was compared with the one derived earlier for the HIV-MN PND from NMR spectroscopy data, (vi) on the basis of all data obtained, the 3D structure model describing the set of biologically relevant conformations, which may present different antigenic determinants to the immune system in various HIV-1 isolates, was proposed for the immunogenic crown of the V3 loop. The results obtained are discussed in conjunction with the data on the structure for the HIV-1 PND reported in literature.  相似文献   

8.
In contrast to infrequent and low-titer cross-neutralization of human immunodeficiency virus type 1 (HIV-1) isolates by HIV-2- and simian immunodeficiency virus (SIV)-positive sera, extensive cross-neutralization of HIV-2NIH-Z, SIVMAC251, and SIVAGM208K occurs with high titer, suggesting conservation of epitopes and mechanism(s) of neutralization. The V3 regions of HIV-2 and SIV isolates, minimally related to the HIV-1 homolog, share significant sequence homology and are immunogenic in monkeys as well as in humans. Whereas the crown of the V3 loop is cross-reactive among HIV-1 isolates and elicits neutralizing antibodies of broad specificity, the SIV and especially HIV-2 crown peptides were not well recognized by cross-neutralizing antisera. V3 loop peptides of HIV-2 isolates did not elicit neutralizing antibodies in mice, guinea pigs, or a goat and together with SIV V3 peptides did not inhibit serum neutralization of HIV-2 and SIV. Thus, the V3 loops of HIV-2 and SIV do not appear to constitute simple linear neutralizing epitopes. In view of the immunogenicity of V3 peptides, the failure of conserved crown peptides to react with natural sera implies a significant role of loop conformation in antibody recognition. Our studies suggest that in addition to their grouping by envelope genetic relatedness, HIV-2 and SIV are neutralized similarly to each other but differently from HIV-1. The use of linear peptides of HIV-2 and SIV as immunogens may require greater attention to microconformation, and alternate subunit approaches may be needed in exploiting these viruses as vaccine models. Such approaches may also be applicable to the HIV-1 system in which conformational epitopes, in addition to the V3 loop, participate in virus neutralization.  相似文献   

9.
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS: Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS: The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.  相似文献   

10.
The principal neutralizing determinant (PND) of HIV-1 is found in the V3 loop of the envelope glycoprotein. Antibodies elicited by peptides from this region, containing the GlyProGlyArgAlaPhe (GPGRAF) sequence, were able to neutralize diverse HIV-1 isolates [Javaherian et al. (1990) Science 250, 1590-1593]. The GPGR tetrapeptide was predicted to adopt a type II beta-turn conformation. Earlier, we showed that glycosylation of synthetic T cell epitopic peptides at natural glycosylation sites stabilized beta-turns [Otv?s et al. (1991) Int. J. Pept. Protein Res. 38, 467-482]. To evaluate the secondary structure modifying effect of the introduction of an N-glycosylated asparagine residue and to find a correlation between conformation and a possible PND potential, a series of glycopeptide derivatives, N(sugar) GPGRAFY-NH2 (4a-f), have been prepared, together with the parent peptides GPGRAFY-NH2 (2) and NGPGRAFY-NH2 (3), by solid-phase peptide synthesis [sugars: (a) beta-D-glucopyranosyl (Glc); (b) beta-D-galactopyranosyl (Gal); (c) Glc-beta(1----4)-Glc; (d) 2-acetamido-2-deoxy-beta-D-glucopyranosyl (GlcNAc); (e) 2-acetamido-2-deoxy-beta-D-galactopyranosyl (GalNAc); (f) GlcNAc-beta(1----4)-GlcNAc; sugars are attached through a beta (1----N beta) linkage to asparagine (N).] Peptides 2-4 were characterized by amino acid analysis, reversed-phase HPLC, and fast atom bombardment mass spectrometry. Circular dichroism (CD) and Fourier-transform infrared (FT-IR) spectroscopic studies were performed in trifluoroethanol (TFE) and water (D2O was used in FT-IR experiments). Nonglycosylated peptides showed significantly different CD spectra in aqueous and TFE solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Because V3 loop-specific antibodies have been shown to inhibit human immunodeficiency virus type 1 (HIV-1) infection of human cells and because specific mutations in the V3 loop render the virus ineffective for infection and syncytium formation, we tested the anti-HIV effects of V3 loop peptides from different HIV-1 strains. We obtained evidence that V3 loop synthetic peptides of 8 to 15 amino acids at nanogram concentrations efficiently blocked HIV-1 IIIB infection of several human T-cell lines and of freshly prepared normal human T cells. More importantly, syncytium formation by three different primary clinical HIV isolates was inhibited by the V3 loop peptide from HIV-1 IIIB at a concentration of 1 micrograms/ml. Concentrations of V3 peptides up to 50 micrograms/ml were not toxic to any of the human cells studied. Additionally, V3 peptides incubated in normal human serum or plasma exhibited biological and physical stability for up to 24 h. Taken together, these results suggest that the V3 loop peptides have medical utility as therapeutic reagents to either prevent HIV-1 infection in humans or reduce the spread of virus infection in HIV-infected individuals. These findings are especially significant because a number of reports in the literature indicate that the V3 loop region in gp120 plays an important role in the initial stages of HIV-1 infection of cells.  相似文献   

12.
The third variable (V3) domain of the human immunodeficiency virus type 1 (HIV-1) external membrane glycoprotein gp120 is of crucial importance in eliciting neutralizing antibodies in infected persons. Polyclonal (PAb) and monoclonal (MAb) antibodies directed against selected epitopes in the V3 domain are valuable tools for analysis of the involvement of such sequences in neutralization and for definition of the relation between amino acid variability and immunological cross-reactions. The aim of this study was to obtain such site-specific antibodies. By using synthetic peptides derived from the V3 domain, a group-specific neutralizing PAb, two high-affinity HIV-1 IIIB neutralizing MAb, and two nonneutralizing MAb were raised. A 15-amino-acid peptide overlapping the tip of the V3 domain of HIV-1 MN was used to produce a rabbit PAb (W0/07). This PAb inhibited syncytium formation induced by HIV-1 IIIB and four field isolates. A similar IIIB-derived peptide was used to generate two murine immunoglobulin G1 (IgG1) MAb (IIIB-V3-13 and IIIB-V3-34). Pepscan analysis mapped the binding site of IIIB-V3-34 to the sequence IRIQRGPGR. The Kds of IIIB-V3-13 and IIIB-V3-34 for gp120 were 6.8 x 10(-11) and 1.6 x 10(-10) M, respectively. These MAb neutralized IIIB but not MN and inhibited syncytium formation induced by IIIB. They are applicable in enzyme-linked immunosorbent assays, immunocytochemistry, and flow cytometry. A peptide covering the left base of the V3 domain was used to generate two murine IgG1 MAb (IIIB-V3-21 and IIIB-V3-26). The binding site of IIIB-V3-21 was mapped to the sequence INCTRPN. These MAb did not neutralize HIV-1 and did not inhibit syncytium formation. This study supports the notion that HIV-1 neutralizing antibodies suitable for multiassay performance can be obtained with synthetic peptides and that high-affinity MAb can be generated. Such site-specific antibodies are useful reagents in the analysis of HIV-1 neutralization. In addition, the cross-neutralization of different viral strains by PAb generated through single-peptide immunization is directly relevant to vaccine development.  相似文献   

13.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals from the United States and Tanzania were examined for antibody reactivity to four synthetic peptides which corresponded to the principal neutralizing determinant from the V3 region of HIV-1 gp120. We observed that the majority of sera from both countries contained antibodies reactive with a V3 peptide whose sequence is based on that of the HIV-1 MN isolate. We were unable to establish a relationship between the presence of V3-reactive antibodies, as measured by enzyme-linked immunosorbent assay and neutralization of homologous HIV-1 isolates, in sera from either the United States or Tanzania. We observed that some sera which contained high antibody titers to the V3 peptides failed to neutralize HIV-1, while others with no antibody reactivity to the panel of V3 peptides exhibited in vitro neutralizing activity. These results suggest that neutralizing epitopes exist outside the V3 loop and that the presence of V3-reactive antibodies in sera does not imply in vitro neutralization of the homologous HIV-1 isolate. In addition, it appears that the V3 loop may consist of both neutralizing and nonneutralizing epitopes. The identification of neutralizing as well as nonneutralizing epitopes will be important for the design of potential HIV-1 vaccines.  相似文献   

14.
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.  相似文献   

15.
Abstract

The model of spatial structure for the principal neutralizing determinant (PND) of the HIV-1 envelope protein gpl20 is proposed in terms of two-dimensional nuclear Overhauser effect (NOE) spectroscopy data. To build the model, the NMR-based theoretical conformational analysis of synthetic PND peptides of length 40, 24, and 12 residues is carried out. The modeling of the molecular spatial structures is performed by a new approach to research of conformationally mobile peptides using the algorithms of the restrained molecular mechanics method developed earlier. The following major conclusions are made based on the analysis of the simulated peptide conformations: i) there is not unique PND structure in solution, ii) there are seven different PND structures each of which agrees with the experimental data and stereochemical criteria used in computing its spatial model, iii) the PND is characterized by irregular conformation containing a number of reverse turns, iv) all of the selected conformations are conserved in the Gly-Pro-Gly-Arg-Ala-Phe stretch, the most provable viral immunodominant epitope. These data allow to suppose that binding properties of this site are determined by the structural motif which forms the conformation of a double β-turn and appears common for all hexapeptide structures.  相似文献   

16.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

17.
The critical role that antibody responses to the V3 loop epitope play in human immunodeficiency virus type 1 (HIV-1) neutralization has caused this peptide to be used in many HIV-1 vaccine candidates. To enhance cross-reactivity toward several V3 sequences, a database of 50 peptides of the V3 region from HIV-1 subtype A was used to design both a consensus peptide and a combinatorial peptide (mixotope) library representative of these sequences. The two immunogens (consensus and mixotope) were incorporated into multiple antigen peptide (MAP) constructions, conjugated to a recombinant surface antigen from hepatitis B virus (HbsAg) carrier protein, and inoculated to mice in combination with a C4 (CD4-binding) peptide MAP construction, also conjugated to HBsAg. The respective responses and cross-reactivity to several V3 loop sequences of both types of immunogens were compared. Mice inoculated with the V3 consensus-MAP-HBsAg + C4-MAP-HBsAg mixture elicited higher antibody responses than those given the V3 mixotope-MAP-HBsAg + C4-MAP-HBsAg mixture. In addition, pooled serum from the first group of immunogens analyzed at dilution 1:100 had higher cross-reactivity against V3 peptides on cellulose membranes than those from mice given the combinatorial immunogen. Fine epitope mapping of both consensus and C4 peptide by the spot synthesis technique showed that sera of the first group strongly recognized both sequences in their entirety, whereas mice immunized with the mixotope library recognized only the N-terminal region of V3. These results seem to suggest that the V3 consensus peptide is superior to the combinatorial strategy in inducing potent and cross-reactive responses to HIV.  相似文献   

18.
The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response.  相似文献   

19.
The V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1(MN) V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a beta hairpin. This structure of V3(MN) was found to have conformation and sequence similarities to beta hairpins in CD8 and CCR5 ligands MIP-1alpha, MIP-1beta, and RANTES and differed from the beta hairpin of a V3(IIIB) peptide bound to the strain-specific murine anti-gp120(IIIB) antibody 0.5beta. In contrast to the structure of the bound V3(MN) peptide, the V3(IIIB) peptide resembles a beta hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3(MN) and the 0.5beta-bound V3(IIIB) structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively.  相似文献   

20.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号