首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

2.
3.
4.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

5.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

6.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

7.
The major canalicular bile salt export pump (Bsep) of mammalian liver is downregulated by endotoxin. This study reports on the effects of dexamethasone and osmolarity on Bsep mRNA expression in cultured rat hepatocytes and its functional relevance in rat liver. Expression of Bsep mRNA in rat hepatocytes 24 and 48 h after isolation was dependent on the presence of dexamethasone (100 nM) in the culture medium. Bsep was functionally active at the pseudocanalicular membrane in cells cultured for 4 days in medium containing dexamethasone. Hypoosmolarity (205 mosmol/l) led to an induction of Bsep mRNA levels, whereas expression was decreased by hyperosmolarity (405 mosmol/l). Also the decay of Bsep mRNA following dexamethasone withdrawal was osmosensitive. In rat liver, dexamethasone counteracted the lipopolysaccharide (LPS)-induced down-regulation of Bsep mRNA levels after 12 hours and abolished the LPS-induced inhibition of taurocholate excretion. These results indicate that glucocorticoids are strong inducers of Bsep in liver. Furthermore, Bsep mRNA levels are osmosensitively regulated. The data suggest a longterm control of Bsep mRNA by osmolarity in addition to the short-term effects on canalicular bile acid excretion, which were reported recently.  相似文献   

8.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

9.
Oxidative stress is known to be a common feature of cholestatic syndrome. We have described the internalization of multidrug resistance-associated protein 2 (Mrp2), a biliary transporter involved in bile salt-independent bile flow, under acute oxidative stress, and a series of signaling pathways finally leading to the activation of novel protein kinase C were involved in this mechanism; however, it has been unclear whether the internalized Mrp2 localization was relocalized to the canalicular membrane when the intracellular redox status was recovered from oxidative stress. In this study, we demonstrated that decreased canalicular expression of Mrp2 induced by tertiary-butyl hydroperoxide (t-BHP) was recovered to the canalicular membrane by the replenishment of GSH by GSH-ethyl ester, a cell-permeable form of GSH. Moreover, pretreatment of isolated rat hepatocytes with colchicine and PKA inhibitor did not affect the t-BHP-induced Mrp2 internalization process but did prevent the Mrp2 recycling process induced by GSH replenishment. Moreover, intracellular cAMP concentration similarly changed with the change of intracellular GSH content. Taken together, our data clearly indicate that the redox-sensitive balance of PKA/PKC activation regulates the reversible Mrp2 localization in two different pathways, the microtubule-independent internalization pathway and -dependent recycling pathway of Mrp2.  相似文献   

10.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   

11.
Small hepatocytes (SHs) are hepatic progenitor cells with hepatic characteristics. They can proliferate to form colonies in culture and change their morphology from flat to rising/piled-up with bile canaliculi (BC), which results in maturation. In this study, we examined whether SHs could express hepatic transporters with polarity, whether the transporters could transport organic anion substrates into BC, and whether the secreted substances could be recovered from BC. Immunocytochemistry and RT-PCR were carried out. [(3)H]-labeled estrogen derivatives were used to measure the functions of the transporters in SHs isolated from normal and multidrug resistance-associated protein (Mrp) 2-deficient rats. The results showed that organic anion-transporting proteins (Oatps) 1 and 2, Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp), Mrp2, and bile-salt export pump (Bsep) were well expressed in rising/piled-up cells and that their expression was correlated to that of hepatocyte nuclear factor 4alpha. Although small SHs expressed not Oatps and Mrp2 but Mrp3, rising/piled-up SHs expressed Oatp1 and 2 and Mrp2 proteins in the sinusoidal and BC membranes, respectively. On the other hand, breast cancer resistant protein (Bcrp) and Mrp3 expression decreased as SHs matured. The substrate transported via Oatps and Mrp2 was secreted into BC and it accumulated in both BC and cyst-like structures. The secreted substrate could be efficiently recovered from BC reconstructed by SHs derived from a normal rat, but not from an Mrp2-deficient rat. In conclusion, SHs can reconstitute hepatic organoids expressing functional organic anion transporters in culture. This culture system may be useful to analyze the metabolism and excretion mechanisms of drugs.  相似文献   

12.
Oxidative stress is known to induce cholestasis, but the underlying mechanisms are poorly understood. In this study we have characterized the short-term effects of tert-butyl hydroperoxide (t-BOOH)- and 1-chloro-2,4-dinitrobenzene (CDNB) on the mrp2 gene encoded canalicular export pump (Mrp2). The effects of t-BOOH and CDNB on bile formation, tissue GSH levels and subcellular Mrp2 localization were studied in perfused rat liver. Both, t-BOOH (0.5 mM) and CDNB (0.1 mM) induced within 60 min a decrease of hepatic GSH levels by more than 90% and an almost complete cessation of bile flow. As revealed by confocal laser scanning microscopy, this cholestasis was accompanied by a loss of immunoreactive MRP2 from the canalicular membrane and its appearance inside the hepatocytes in putative intracellular vesicles. On the other hand, the intracellular distribution of dipeptidyl peptidase IV (DPPIV), another canalicular protein, and of zonula occludens associated polypeptide (ZO-1) remained unaffected, indicating selectivity of the Mrp2 retrieval pattern. Both, t-BOOH and CDNB induced a rapid net K+ efflux from the liver and a significant decrease of liver cell hydration. We conclude that severe glutathione depletion induces cholestasis by a retrieval of Mrp2, but not of DPPIV from the canalicular membrane. The underlying mechanism is unclear; however, a decrease in liver cell hydration, which occurs under these conditions, may contribute to this effect.  相似文献   

13.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

14.
Sinusoidal and apical transporters are responsible for the uptake and biliary elimination of many compounds by hepatocytes. Few in vitro models are however available for analyzing such functions. The expression and bile-acid inducibility of 13 transporters and two nuclear receptors were investigated in the new rat polarized lines, Can 3−1 and Can 10, and in their unpolarized parent, Fao. The relative abundance of mRNA, the protein level, and their localization were examined by real-time quantitative PCR, Western blotting, immunofluorescence, and confocal microscopy. Compared with rat liver, mRNA levels of Fao cells were: negligible for Bsep/Abcb11; lower for the uptake transporters Ntcp and Oatps; similar for SHP, FXR, and Bcrp/Abcg2; and higher (four–fold to 160-fold) for the efflux pumps Mdr1b/Abcb1b, Mdr2/Abcb4, Mrp1/Abcc1, Mrp2/Abcc2, Mrp3/Abcc3, Abcg5, and Abcg8. This profile was mostly maintained (and improved for Bsep) in Can 10. Some transporters were less well expressed in Can 3−1. In both lines, sinusoidal (Ntcp, Mrp3) and canalicular transporters (Mdr-P-glycoproteins detected with C219 antibody, Mrp2) were localized at their correct poles. Bile-acid effects on polarity and mRNA levels of transporters were analyzed after a 6-day treatment with 50 μM taurocholic, chenodeoxycholic (CDCA), or ursodeoxycholic acid (UDCA). No polarization of Fao cells was induced; Can 10 and Can 3−1 polarity was maintained. CDCA and UDCA induced marked enhancement of the volume of Can 10 bile canaliculi. CDCA upregulated Bsep, Mdr2, SHP, Mdr1b, and Oatp2/1a4 in Can 10 (two- to seven-fold) and in Fao cells. Thus, Can 10 constitutes an attractive polarized model for studying vectorial hepatobiliary transport of endogenous and xenobiotic cholephilic compounds. This work was supported by a grant from Egide (PAI Picasso) and the Acción Integrada Hispano-Francesa (HF2003-0089). This research group is part of the Network for Cooperative Research on Membrane Transport Proteins (REIT), co-funded by the Ministerio de Educación y Ciencia, Spain and the European Regional Development Fund (ERDF; grant BFU2005-24983-E/BFI) and belongs to the “Centro de Investigación Biomédica en Red” for Hepatology and Gastroenterology Research (CIBERehd), Instituto de Salud Carlos III, Spain.  相似文献   

15.
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.  相似文献   

16.

Objective

The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect.

Design

ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis.

Results

E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2.

Conclusions

cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.  相似文献   

17.
Hepatocytes of the small skate (Raja erinacea) were isolated by collagenase perfusion and evaluated by a variety of functional and morphologic criteria. Cell yield was 1.45 X 10(8) +/- 1.3 X 10(7) cells per isolation, and as long as 8 h after isolation 98% of the hepatocytes excluded Trypan blue and no leakage of lactate dehydrogenase (LDH) or cell associated potassium could be detected. Oxygen consumption averaged 1.6 +/- 0.5 nmol/min/mg cell protein, was not stimulated by 1 mM succinate, and also remained stable for up to 8 h following isolation. However, 2,4,-dinitrophenol (5 X 10(-5) M) produced a 55% increase in oxygen utilization while ouabain, (1 mM) or sodium removal decreased oxygen consumption by 31 +/- 6 and 33 +/- 7%, respectively, indicating that a significant portion of the cells energy utilization is coupled to the activity of plasma membrane Na+, K+-ATPase. Light microscopic studies showed that the individual hepatocytes had diameters of 28 +/- 5 microns and contained large lipid droplets. Electron microscopy revealed groups of three to five cells with normal ultrastructure and tight junctions and desmosomes surrounding a single bile canaliculus. These studies indicate that skate hepatocytes can be isolated in high yield that retain their structural polarity in the form of clusters of cells formed around a single bile canaliculus. These hepatocytes remain morphologically intact and metabolically stable for a prolonged period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Phloracetophenone (2,4,6-trihydroxyacetophenone, THA) is a potent choleretic in the bile fistula rat, although the mechanism is unknown. In the present study, we examined how THA enhances bile secretion. Stepwise infusions of THA (1-4 micromol/min) in the isolated perfused rat liver resulted in an immediate and dose-dependent increase in bile flow (BF), which reached saturation. The increase in BF was not associated with a change in the excretion of bile acids, suggesting that THA stimulated bile acid-independent bile flow. To further define the mechanism, the effect of THA on the excretion of sulfobromophthalein (BSP) and disulfobromophthalein (DBSP), typical multidrug resistance protein-2 (Mrp2) substrates was examined. THA inhibited the biliary excretion of both substrates. Because DBSP is excreted without conjugation to glutathione, in contrast to BSP, the findings suggest that THA might compete with DBSP and BSP metabolites at a common canalicular transport site, presumably Mrp2. THA infusions had no effect on the subcellular localization and distribution of either Mrp2 or the bile salt export pump (Bsep), nor the integrity of the tight junction. In contrast, the choleretic activity of THA was completely absent in the TR(-) rat, an animal model that lacks Mrp2, directly implicating this canalicular export pump as the mechanisms by which THA is excreted in bile. THA also partially reversed the cholestatic effects of estradiol-17beta-D-glucuronide, a process also dependent on Mrp2. In conclusion, the choleretic activity of THA and its possible metabolites is dependent on Mrp2. THA appears to stimulate BF by its osmotic effects and may attenuate the cholestatic effects of hepatotoxins undergoing biotransformation and excretion via similar pathways.  相似文献   

19.
A procedure is described for maintaining primary cultures of adult rat hepatocytes for prolonged periods of time on layer of irradiated mouse fibroblast cell line (C3H/1OT1/2) and on a secondary lung fibroblasts obtained from Sprague Dawley rats. Morphologically and ultrastructurally the cocultivated hepatocytes retained many characteristics of hepatocytes in vivo. Within 24 hours after seeding, the individual cells were attached on the feeder cell layer and the in vivo polarity of the liver cells reappeared. Electron microscope studies demonstrated the appearance of newly developed bile ducts and junctions between hepatocytes as well as between hepatocytes and feeder cells. Histochemically, these cells were positive for glucose-6-phosphatase and for glycogen. After 14 days in culture the hepatocytes could be reseeded onto fresh C3H1OT1/2 cells. In contrast, hepatocytes maintained on plastic substrate lost their glycogen content and the epithelial character of the liver cells after 5 days in culture, and by day 10 this culture became predominantly fibroblastic. It is suggested that hepatocytes maintained on an irradiated fibroblast feeder layer provide a valuable approach for studying the morphogenesis, cytotoxicity, or the metabolism of different chemicals in vitro.  相似文献   

20.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号