首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium   总被引:41,自引:0,他引:41  
The glycosaminoglycan hyaluronan is a key substrate for cell migration in tissues during inflammation, wound healing, and neoplasia. Unlike other matrix components, hyaluronan (HA) is turned over rapidly, yet most degradation occurs not locally but within distant lymph nodes, through mechanisms that are not yet understood. While it is not clear which receptors are involved in binding and uptake of hyaluronan within the lymphatics, one likely candidate is the lymphatic endothelial hyaluronan receptor LYVE-1 recently described in our laboratory (Banerji, S., Ni, J., Wang, S., Clasper, S., Su, J., Tammi, R., Jones, M., and Jackson, D.G. (1999) J. Cell Biol. 144, 789-801). Here we present evidence that LYVE-1 is involved in the uptake of hyaluronan by lymphatic endothelial cells using a new murine LYVE-1 orthologue identified from the EST data base. We show that mouse LYVE-1 both binds and internalizes hyaluronan in transfected 293T fibroblasts in vitro and demonstrate using immunoelectron microscopy that it is distributed equally among the luminal and abluminal surfaces of lymphatic vessels in vivo. In addition, we show by means of specific antisera that expression of mouse LYVE-1 remains restricted to the lymphatics in homozygous knockout mice lacking a functional gene for CD44, the closest homologue of LYVE-1 and the only other Link superfamily HA receptor known to date. Together these results suggest a role for LYVE-1 in the transport of HA from tissue to lymph and imply that further novel hyaluronan receptors must exist that can compensate for the loss of CD44 function.  相似文献   

2.
The extracellular matrix glycosaminoglycan hyaluronan (HA) is an abundant component of skin and mesenchymal tissues where it facilitates cell migration during wound healing, inflammation, and embryonic morphogenesis. Both during normal tissue homeostasis and particularly after tissue injury, HA is mobilized from these sites through lymphatic vessels to the lymph nodes where it is degraded before entering the circulation for rapid uptake by the liver. Currently, however, the identities of HA binding molecules which control this pathway are unknown. Here we describe the first such molecule, LYVE-1, which we have identified as a major receptor for HA on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.  相似文献   

3.
The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo.  相似文献   

4.
The hyaluronan receptor LYVE-1 is selectively expressed in the endothelium of lymphatic capillaries, where it has been proposed to function in hyaluronan clearance and hyaluronan-mediated leukocyte adhesion. However, recent studies suggest that hyaluronan homeostasis is unperturbed in LYVE-1(-/-) mice and that lymphatic adhesion/transmigration may be largely mediated by ICAM-1 and VCAM-1 rather than LYVE-1. Here we have explored the possibility that LYVE-1 functions during inflammation and report that the receptor is down-regulated by pro-inflammatory cytokines. Using cultured primary lymphatic endothelial cells, we show that surface expression of LYVE-1 is rapidly and reversibly lost after exposure to tumor necrosis factor-alpha (TNFalpha) and TNFbeta via internalization and degradation of the receptor in lysosomes, coupled with a shutdown in gene expression. Curiously, internalization does not result in significant uptake of hyaluronan, a process that is largely insensitive to the novel LYVE-1 adhesion blocking monoclonal antibody 3A, and proceeds almost equally in resting and inflammation-activated lymphatic endothelial cells. Finally, we show that TNF can induce down-modulation of LYVE-1 in ex vivo murine dermal tissue explants and present evidence that the process occurs in vivo, in the context of murine allergen-induced skin inflammation. These findings suggest that LYVE-1 can function independently of hyaluronan and have implications for the use of LYVE-1 as a histological marker for lymphangiogenesis in human pathology.  相似文献   

5.
Hyaluronan (HA) and CD44 are involved in several processes such as cell migration and differentiation. In the present study, we examined the expression and distribution of both hyaluronan and its cell surface receptor (CD44) in the human placenta, which is a rapidly growing and differentiating organ that plays a fundamental role in fetal life. Hyaluronan was detected by a specific biotinylated binding probe, termed b-PG. In the first half of gestation, HA was strongly expressed in the stroma of the mesenchymal villi which have been previously identified as responsible for the growth and differentation of the villous trees. The other villous types showed an intense staining only in the fetal vessel walls and in the connective tissue closely underlying the trophoblastic cover. In addition, hyaluronan positive staining was also apparent in a restricted rim of villous stroma directly apposed to extravillous cytotrophoblastic cell islands and cell columns. In full term placentas, all villi expressed HA in their stromal tissue with a more homogenous staining than in the first half of gestation. In contrast to hyaluronan, in the first trimester CD44 was restricted to some of the Hofbauer cells which may be able to internalize hyaluronan, thus playing a significant role in its removal in early pregnancy. CD44 was primarily expressed starting from the 16th week of gestation. At the end of pregnancy it was expressed in the various villous types, especially in stem villi. Moreover, the plasma membrane of some extravillous cytotrophoblastic cells in the basal plate and the large majority of the decidual cells showed a positive immunostaining for this receptor. Taken together, these data suggest that HA is strongly involved in early villous morphogenesis, whereas CD44 seem to be play an important role in tissue remodelling later in gestation.  相似文献   

6.
The immunohistochemical properties of selective lymph vessel markers, and NO synthase (NOS) and cyclo-oxygenase (COX) activities, were examined in two kinds of human lymphatic endothelial cells isolated from collecting (macro-) and initial (micro-) lymph vessels. The constitutively expressed genes in the two kinds of lymphatic endothelial cells were also evaluated by using oligonucleotide microarray analysis and RT-PCR. We also investigated the effects of oxygen concentration in culture conditions or growth factors such as basic fibroblast growth factor (bFGF), VEGF-A, and VEGF-C on proliferation activities of the two kinds of human lymphatic endothelial cells. Immunoreactivity to LYVE-1 and the RT-PCR expression level of LYVE-1 mRNA in endothelial cells of micro-lymph vessels were stronger than those of macro-lymph vessels. Immunoreactivity to VEGF R1 was also observed as significantly stronger in the micro-lymph vessels. In contrast, the immunoreactivity to Prox-1 and the RT-PCR expression level of Prox-1 mRNA in endothelial cells of macro-lymph vessels were stronger than those of micro-lymph vessels. Similarly, immunoreactivity to ecNOS, iNOS, COX1, and COX2 was also found as significantly higher than in macro-lymph vessels. In contrast, the increase of O(2) concentration ranging from 5% to 21% caused a significant reduction of the proliferation activity of endothelial cells in macro-lymph vessels. In conclusion, these findings suggest marked heterogeneity in the immunohistochemical, genomic, and proliferation activity of human lymphatic endothelial cells between micro-(initial) and macro-(collecting) lymph vessels.  相似文献   

7.
LYVE-1(+) corneal lymphatics contribute to drainage and immunity. LYVE-1 is widely accepted as the most reliable lymphatic marker because of its continuous expression in lymphatic endothelium. LYVE-1 expression in corneal lymphatics has not been examined. In this study, we report intact CD31(+) corneal lymphatic capillary endothelial cells that do not express LYVE-1. The number of LYVE-1(-) gaps initially increased until 8 wk of age but was significantly reduced in aged mice. C57BL/6 mice showed a notably higher number of the LYVE-1(-)/CD31(+) lymphatic regions than BALB/c mice, which suggests a genetic predisposition for this histological feature. The LYVE-1(-) lymphatic gaps expressed podoplanin and VE-cadherin but not αSMA or FOXC2. Interestingly, the number of LYVE-1(-) gaps in FGF-2, but not VEGF-A, implanted corneas was significantly lower than in untreated corneas. Over 70% of the CD45(+) leukocytes were found in the proximity of the LYVE-1(-) gaps. Using a novel in vivo imaging technique for visualization of leukocyte migration into and out of corneal stroma, we showed reentry of extravasated leukocytes from angiogenic vessels into newly grown corneal lymphatics. This process was inhibited by VE-cadherin blockade. To date, existence of lymphatic valves in cornea is unknown. Electron microscopy showed overlapping lymphatic endothelial ends, reminiscent of microvalves in corneal lymphatics. This work introduces a novel corneal endothelial lymphatic phenotype that lacks LYVE-1. LYVE-1(-) lymphatic endothelium could serve as microvalves, supporting unidirectional flow, as well as immunological hot spots that facilitate reentry of stromal macropahges.  相似文献   

8.
Characterization of markers and growth factors for lymphatic endothelium   总被引:2,自引:0,他引:2  
Waś H 《Postepy biochemii》2005,51(2):209-214
  相似文献   

9.
Schlemm''s canal is an important structure of the conventional aqueous humor outflow pathway and is critically involved in regulating the intraocular pressure. In this study, we report a novel finding that prospero homeobox protein 1 (Prox-1), the master control gene for lymphatic development, is expressed in Schlemm''s canal. Moreover, we provide a novel in vivo method of visualizing Schlemm''s canal using a transgenic mouse model of Prox-1-green fluorescent protein (GFP). The anatomical location of Prox-1+ Schlemm''s canal was further confirmed by in vivo gonioscopic examination and ex vivo immunohistochemical analysis. Additionally, we show that the Schlemm''s canal is distinguishable from typical lymphatic vessels by lack of lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expression and absence of apparent sprouting reaction when inflammatory lymphangiogenesis occurred in the cornea. Taken together, our findings offer new insights into Schlemm''s canal and provide a new experimental model for live imaging of this critical structure to help further our understanding of the aqueous humor outflow. This may lead to new avenues toward the development of novel therapeutic intervention for relevant diseases, most notably glaucoma.  相似文献   

10.
The existence of endothelial progenitor cells (EPC) with high cell-cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC-derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM-1), CD105 (endoglin), CD144 (VE-cadherin), Tie-1, Tie-2, VEGFR-1/Flt-1 and VEGFR-2/Flk-1. Few EPC-derived cells became positive for LYVE-1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell-specific markers such as podoplanin and Prox-1. Functional tests demonstrated that the cobblestone EPC-derived cells up-regulated CD54 and CD62E expression in response to TNF-α, incorporated DiI-acetylated low-density liproprotein and formed cord- and tubular-like structures with capillary lumen in three-dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel-Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC-derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.  相似文献   

11.
The hyaluronan receptor LYVE-1 is expressed abundantly on the surfaces of lymphatic vessels and lymph node sinus endothelial cells from early development, where it has been suggested to function both in cell adhesion/transmigration and as a scavenger for hyaluronan turnover. To investigate the physiological role(s) of LYVE-1, we generated mice in which the gene for the receptor was inactivated by replacement with a beta-galactosidase reporter. LYVE-1(-/-) mice displayed an apparently normal phenotype, with no obvious alteration in lymphatic vessel ultrastructure or function and no apparent change in secondary lymphoid tissue structure or cellularity. In addition, the levels of hyaluronan in tissue and blood were unchanged. LYVE-1(-/-) mice also displayed normal trafficking of cutaneous CD11c(+) dendritic cells to draining lymph nodes via afferent lymphatics and normal resolution of oxazolone-induced skin inflammation. Finally, LYVE-1(-/-) mice supported normal growth of transplanted B16F10 melanomas and Lewis lung carcinomas. These results indicate that LYVE-1 is not obligatory for normal lymphatic development and function and suggest either the existence of compensatory receptors or a role more specific than that previously envisaged.  相似文献   

12.
Vascular endothelial growth factor (VEGF-A) is an inducer of endothelial cell (EC) proliferation, migration, and synthesis of inflammatory agents such as platelet-activating factor (PAF). Recently, neuropilin-1 (NRP-1) has been described as a coreceptor of KDR which potentiates VEGF-A activity. However, the role of NRP-1 in numerous VEGF-A activities remains unclear. To assess the contribution of NRP-1 to VEGF-A mediated EC proliferation, migration, and PAF synthesis, we used porcine aortic EC (PAEC) recombinantly expressing Flt-1, NRP-1, KDR or KDR and NRP-1. Cells were stimulated with VEGF-A, which binds to Flt-1, KDR and NRP-1, and VEGF-C, which binds to KDR only. VEGF-A was 12.4-fold more potent than VEGF-C in inducing KDR phosphorylation in PAEC-KDR. VEGF-A and VEGF-C showed similar potency to mediate PAEC-KDR proliferation, migration, and PAF synthesis. On PAEC-KDR/NRP-1, VEGF-A was 28.6-fold more potent than VEGF-C in inducing KDR phosphorylation and PAEC-KDR/NRP-1 proliferation (1.3-fold), migration (1.7-fold), and PAF synthesis (4.6-fold). These results suggest that cooperative binding of VEGF-A to KDR and NRP-1 enhances KDR phosphorylation and its biological activities. Similar results were obtained with bovine aortic EC that endogenously express both KDR and NRP-1 receptors. In contrast, stimulation of PAEC-Flt-1 and PAEC-NRP-1 with VEGF-A or VEGF-C did not induce proliferation, migration, or PAF synthesis. In conclusion, the presence of NRP-1 on EC preferentially increases KDR activation by VEGF-A as well as KDR-mediated biological activities, and may elicit novel intracellular events. On the other hand, VEGF-A and VEGF-C have equipotent biological activities on EC in absence of NRP-1.  相似文献   

13.
14.
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes.mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed.CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA.These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.  相似文献   

15.
The adhesion of tumour cells to the endothelial cells of blood vessels of the microcirculation represents a crucial step in haematogenous metastasis formation. Similar to leukocyte extravasation, selectins mediate initial tumour cell rolling on endothelium. An additional mechanism of leukocyte adhesion to endothelial cells is mediated by hyaluronan (HA). However, data on the interaction of tumour cells with hyaluronan under shear stress are lacking. The expression of the hyaluronan binding protein CD44 on tumour cell surfaces was evaluated using flow cytometry. The adhesion of tumour cells to HA with regard to adhesive events and rolling velocity was determined in flow assays in the human small cell lung cancer (SCLC) cell lines SW2, H69, H82, OH1 and OH3, the colon carcinoma cell line HT29 and the melanoma cell line MeWo. Hyaluronan deposition in human and mouse lung blood vessels was histochemically determined. MeWo adhered best to HA followed by HT29. SCLC cell lines showed the lowest CD44 expression on the cell surface and lowest number of adhesive events. While hyaluronan was deposited in patches in the microvasculature of the alveolar septum in the human lung, it was only present in the periarterial space in the mouse lung. Certain tumour entities bind to HA under physiological shear stresses so that HA can be considered a further ligand for cell extravasation in haematogenous metastasis. As hyaluronan is deposited within the pulmonary microvasculature, it may well serve as a ligand for its binding partner CD44, which is expressed by many tumour cells.  相似文献   

16.
Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA.   总被引:13,自引:0,他引:13  
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced proliferation of cultured human vascular endothelial cells and specifically lowered the level of Flt-1 or KDR mRNA present in the cells. Anti- Flt-1 and KDR ribozymes also exhibited anti-angiogenic activity in a rat corneal pocket assay of VEGF-induced angiogenesis. This report illustrates the anti-angiogenic potential of these ribozymes as well as their value in studying VEGF receptor function in normal and pathophysiologic states.  相似文献   

17.
Preeclampsia is characterized by maternal endothelial dysfunction (e.g., increased maternal vascular permeability caused by the disassembly of endothelial junction proteins). However, it is unclear if preeclampsia is associated with impaired vascular growth and expression of endothelial junction proteins in human placentas. Herein, we examined vascular growth in placentas from women with normal term (NT) and preeclamptic (PE) pregnancies using two endothelial junction proteins as endothelial markers: CD31 and vascular endothelial-cadherin (VE-Cad). We also compared protein and mRNA expression of CD31 and VE-Cad between NT and PE placentas, and determined the alternatively spliced expression of CD31 using PCR. We found that CD31 and VE-Cad were immunolocalized predominantly in villous endothelial cells. However, capillary number density (total capillary number per unit villous area) and capillary area density (total capillary lumen area per unit villous area) as well as CD31 and VE-Cad protein and mRNA levels were similar between NT and PE placentas. PCR in combination with sequence analysis revealed a single, full-length CD31, suggesting that there are no alternatively spliced isoform of CD31 expressed in placentas. These data indicate that preeclampsia does not significantly affect vascular growth or the expression of endothelial junction proteins in human placentas.  相似文献   

18.
19.
20.
Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-A165 (VEGF-A165) in endothelial cells. To define the role of NP-1 in the biological functions of VEGF, we developed a specific peptide antagonist of VEGF binding to NP-1 based on the NP-1 binding site located in the exon 7- and 8-encoded VEGF-A165 domain. The bicyclic peptide, EG3287, potently (K(i) 1.2 microM) and effectively (>95% inhibition at 100 microM) inhibited VEGF-A165 binding to porcine aortic endothelial cells expressing NP-1 (PAE/NP-1) and breast carcinoma cells expressing only NP-1 receptors for VEGF-A, but had no effect on binding to PAE/KDR or PAE/Flt-1. Molecular dynamics calculations, a nuclear magnetic resonance structure of EG3287, and determination of stability in media, indicated that it constitutes a stable subdomain very similar to the corresponding region of native VEGF-A165. The C terminus encoded by exon 8 and the three-dimensional structure were both critical for EG3287 inhibition of NP-1 binding, whereas modifications at the N terminus had little effect. Although EG3287 had no direct effect on VEGF-A165 binding to KDR receptors, it inhibited cross-linking of VEGF-A165 to KDR in human umbilical vein endothelial cells co-expressing NP-1, and inhibited stimulation of KDR and PLC-gamma tyrosine phosphorylation, activation of ERKs1/2 and prostanoid production. These findings characterize the first specific antagonist of VEGF-A165 binding to NP-1 and demonstrate that NP-1 is essential for optimum KDR activation and intracellular signaling. The results also identify a key role for the C-terminal exon 8 domain in VEGF-A165 binding to NP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号