首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenner  N.  Ostle  N.  Freeman  C.  Sleep  D.  Reynolds  B. 《Plant and Soil》2004,259(1-2):345-354
Over half of the world's peat originated from Sphagnum, representing 10–15% of the terrestrial carbon stock. However, information regarding the release and exudation of organic carbon by living Sphagnum plants into the surface peat is scarce. In this study, we examined the contribution of recent Sphagnum subnitens (Russ. and Warnst.) photosynthate carbon to the peatland dissolved organic carbon (DOC) pool. This was done using a 13CO2 pulse-chase experimental approach during the growing season. Despite the importance of Sphagnum in long-term carbon accumulation, results showed that the Sphagnum community rapidly contributes recently synthesized carbon to the peatland DOC pool. We estimate that by 4 h up to 4% of the total DOC in peat leachate was derived from 13CO2 pulse labelling at ambient CO2 concentrations. Nonetheless, a huge 64% of the 13C initially assimilated by photosynthesis was retained in Sphagnum subnitens for 23 days after labelling, consistent with the role of Sphagnum in peatland carbon accumulation. The majority of 13C loss as respired CO2 came within the few days post 13CO2 labelling, suggesting that it was derived from plant respiration of photosynthates.  相似文献   

2.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.  相似文献   

3.
Restoration of peat bog vegetation inhighly degraded peatlands is generallyattempted by improving the hydrology ofthese areas. The present paper discussesand explains various restoration strategiesrelating to peat quality, water chemistryand hydrology. In some cases, (shallow)inundation of bog remnants leads to a rapidredevelopment of (floating) Sphagnumvegetation, usually when poorly humifiedSphagnum peat is still present. Afterinundation, the peat either swells up tothe newly created water table or becomesbuoyant, in both cases creating a favorablesubstrate for Sphagnum mosses. Bulkdensity and methane production rate play animportant role in the buoyancy of floatingpeat, methane providing buoyancy to thesubstrates. The presence of (slightly)calcareous groundwater in the peat base mayenhance the development of floating raftsby stimulating decomposition processes.Alternatively, the growth of submerged Sphagnum species can also lead to thedevelopment of floating rafts. This dependson the penetration of light into the waterlayer and the availability of carbondioxide in the water layer.Many bog remnants, however, only havestrongly humified peat, which does notfavor the redevelopment of Sphagnumcarpets after deep inundation. On the otherhand, most peat moss species appear to dovery well on surface soaked black peat,which is why shallow inundation (< 0.3 m)is to be preferred in such cases.Compartmentalization of the terrain willprobably be necessary to ensure a more orless constant water table.An important prerequisite for thesuccessful restoration of bog remnants isthe development of a hydrologicallyself-regulating acrotelm. Key speciesinvolved in this development are Sphagnum magellanicum, Sphagnumpapillosum and Sphagnum rubellum.These typical hummock and lawn species areusually very slow colonizers compared tohollow species such as Sphagnumcuspidatum and Sphagnum fallax.Introduction of key species in carpetsdominated by hollow species or on baresubstrates appears to be very successful,indicating that the main constraint iscolonization.  相似文献   

4.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

5.
Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.  相似文献   

6.
Two experiments were conducted for developing restoration techniques for pool margin communities in cutover peatlands. We first aimed to measure the regeneration potential of a typical edge pool liverwort, Cladopodiella fluitans (Nees) H. Buch. We introduced C. fluitans in floating baskets in a restored peatland. We tested three fragment sizes (patches of 2 cm2, stretched patches and shredded fine fragments of 0.1-1 mm), two introduction densities (ratio between surface of collected areas and surface of restored areas of 1:5 and 1:10) as well as the effect of a straw mulch. After two years, the percentage covers of C. fluitans were five times larger in experimental units protected with straw than in those without protection. Yet, the fragment sizes and the densities tested had no effect on the regeneration of the liverwort. The second experiment aimed to test a moss layer transfer approach to restore plant diversity around pool margins. We tested four communities, dominated by (1) Sphagnum cuspidatum Hoffman, (2) Sphagnum fallax (H. Klinggraff) H. Klinggraff, (3) Sphagnum papillosum Linberg as well as (4) a mixed community composed of equal quantities of C. fluitans, S. cuspidatum and S. papillosum. We introduced plant material in two density ratios (1:5 and 1:10). Sphagnum mosses did colonize pool margins, and showed even more than 60% cover for some treatments after three growing seasons, but the recovery of the introduced vascular plants remained below 5% for most species. The establishment of pool vascular species thus seems to be more intricate than for bryophytes and specific introduction techniques might be needed.  相似文献   

7.
《Journal of bryology》2013,35(2):83-90
Abstract

Nitrogen deposition may cause shifts in the Sphagnum species composition of bogs, ultimately affecting the conservation value of these systems. We studied the effects of N and P on the expansion of S. fallax and S. flexuosum in bogs. We related historical census data of S. fallax, S. flexuosum, and four of their accompanying species to changes in N deposition. In addition, we conducted two fertilization experiments with N and P; one at a low deposition site with S. flexuosum and one at two high deposition sites with S. fallax. Finally, we related existing data on capitulum N and P concentrations of S. fallax to its abundance in the field.

A relative increase in observed frequency of S. fallax coincided with an historical increase in N deposition in the Netherlands. There was no indication that S. fallax consistently outcompeted one of the other five Sphagnum species; the observed frequency of the Sphagnum species analysed was rather stable with time. The census data on S. flexuosum did not indicate a response to N deposition, but the species expanded at the low N deposition site when extra N was applied. In contrast, the expansion of S. fallax at the high deposition sites was limited by P. Organic nutrient concentrations suggested that when S. fallax can maintain a capitulum N concentration of 7 mg g-1 or higher and a P concentration of 0.7 mg g-1 or higher the species can grow to dominate.

We conclude that S. fallax will gradually colonize an increasing number of new habitats in areas with a low, albeit increasing, N deposition, but will only grow to dominate when P supply is adequate. Then, the expansion of S. fallax may lead to ousting of the other Sphagnum species present.  相似文献   

8.
Sphagnum magellanicum has been viewed as being a predominantly circumpolar species in the northern hemisphere, but it occurs in the southern hemisphere and was originally described from the southern parts of Chile. It is an ecologically important species in mire ecosystems and has been extensively used as a model to study processes of growth, carbon sequestration and peat decomposition. Molecular and experimental studies have, however, revealed genetic structure within S. magellanicum, and morphological differences associated with these genetic groups. Here we describe Sphagnum divinum in Sphagnum subgenus Sphagnum (Sphagnaceae, Bryophyta) as a new species, based on molecular and morphological evidence. Sphagnum medium is reinstated as a distinct species and is epitypified. Consequently, a new species concept of S. magellanicum is presented including an epitypification. Important morphological characters to separate these three species in the field and under the microscope are presented. Ecology and distribution differ among the species; S. divinium has a wide habitat range including mire margin, forested peatlands and moist heaths, and a circumpolar distribution around the northern hemisphere. Sphagnum medium seems to be more restricted to ombrotrophic mire expanse habitats and shows an amphi-Atlantic distribution in the northern hemisphere. Sphagnum magellanicum has a very broad ecological niche in peatlands and is found in most mire habitats in Tierra del Fuego on the southern tip of South America.  相似文献   

9.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

10.
Northern peatlands are important stores of carbon and reservoirs of biodiversity that are vulnerable to global change. However, the carbon dynamics of individual peatland plant species is poorly understood, despite the potential for rising atmospheric CO2 to affect the vegetation’s contribution to overall ecosystem carbon function. Here, we examined the effects of 3 years exposure to elevated CO2 (eCO2) on (a) peatland plant community composition and biomass, and (b) plant carbon dynamics and the production of dissolved organic carbon (DOC) using a 13CO2 pulse–chase approach. Results showed that under eCO2, Sphagnum spp. cover declined by 39% (P < 0.05) and Juncus effusus L. cover increased by 40% (P < 0.001). There was a concurrent increase in above- and belowground plant biomass of 115% (P < 0.01) and 96% (P < 0.01), respectively. Vascular species assimilated and turned over more 13CO2-derived carbon than Sphagnum spp. (49% greater turnover of assimilated 13C in J. effusus and F. ovina L. leaf tissues compared with Sphagnum, P < 0.01). Elevated CO2 also produced a 66% rise in DOC concentrations (P < 0.001) and an order of magnitude more ‘new’ exudate 13DOC than control samples (24 h after 13CO2 pulse-labelling 2.5 ± 0.5 and 0.2 ± 0.1% in eCO2 and control leachate, respectively, P < 0.05). We attribute the observed increase in DOC concentrations under eCO2 to the switch from predominantly Sphagnum spp. to vascular species (namely J. effusus), leading to enhanced exudation and decomposition (litter and peat). The potential for reduced peatland carbon accretion, increased DOC exports and positive feedback to climate change are discussed.  相似文献   

11.
Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood.We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution.Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.  相似文献   

12.
In boreal forested peatlands, we disturbed Sphagnum spp. and Pleurozium schreberi carpets to see how disturbance influenced substrate physico-chemistry, and growth and foliar nutrition of planted Picea mariana seedlings. Carpets were hand disturbed using gardening tools to a depth of approximately 25 cm. Carpet disturbance was aimed at disrupting only the organic layer and did not result in the mixing of organic matter with mineral soil. Disturbed carpets, whether P. schreberi or Sphagnum spp., were warmer than undisturbed carpets and had a lower cover of ericaceous shrubs. Pleurozium schreberi carpets had a higher decomposition index than Sphagnum spp. carpets, whereas disturbance had no effect on this variable. Pleurozium schreberi had higher Ntot and dissolved organic N concentrations (DON) than Sphagnum spp., whereas disturbance increased NH 4 + availability in both substrates. Moss disruption increased seedling growth rates as well as their foliar N and P concentrations in both substrates and these variables remained higher in P. schreberi than in Sphagnum spp. within a given treatment. Seedling growth was positively correlated to substrate Ntot, NH 4 + and DON concentrations, and to foliar N and P concentrations, and negatively to substrate C/N and ericaceous shrub cover. Disruption of the moss carpets without mineral soil mixing improved black spruce seedling growth and nutrition in both moss types but the superiority of P. schreberi compared to Sphagnum spp. as a growing substrate remained present.  相似文献   

13.
The purpose of this study was to consider the relative importance of several habitat variables in explaining the patterns in the structure of macroinvertebrate assemblages in open-water habitats, in relatively intact bogs and fens, which should inform conservation strategies. It was hypothesised that variables relating to the size of the water body would differentiate the communities and that some species would be unique to certain conditions. The macroinvertebrate communities from pools >100 m2, 10.1–100 m2 and Sphagnum hollows were characterised using sweep sampling for eight intact peatland sites across four bog types, and related to habitat variables including pool size, Sphagnum cover and hydrochemistry. Results showed community composition and structure differed significantly between deep, permanent pools and shallow, drought-sensitive Sphagnum hollows, with larger invertebrates, such as Odonates and Dytiscinae, rarely found in the hollows. Sphagnum cover accounted for a substantial amount of the variation in community composition. An examination of life-history strategies found species dependent on predictable conditions for juvenile development to be more abundant in pools. In contrast, taxa that could delay juvenile development until conditions were favourable were more abundant in Sphagnum hollows. These results highlight the importance of habitat heterogeneity in maintaining macroinvertebrate diversity in peatlands.  相似文献   

14.
The genus Sphagnum is an essential component in the formation and maintenance of high latitude peatlands, bogs and mires. The species grows in dense, extended mats of agglomerated shoots that allow it to retain water necessary for its growth. These mats are partly responsible for maintaining the right conditions for other species in these wetlands to thrive. In this issue of Physiologia Plantarum, Mironov et al. (2020) monitored the growth of Sphagnum riparium for a period of 4 years and revealed three distinct growth rhythms: a seasonal temperature dependent, a circalunar and a third one, synchronized with the circalunar. This synchronised nature of Sphagnum growth could contribute to its position as a key species in the maintenance of peatlands.  相似文献   

15.
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.  相似文献   

16.
A sample of soluble humic acid from peat-bog water was a glycoconjugate containing 46% of a glycuronoglycan moiety and 54% of a dark-brown chromophore. These accounted for 37% and 63%, respectively, of the titratable acidity of the polymer. Cation-exchange capacities, and cationic selectivity coefficients relative to magnesium ions (KMgMe), were measured on the humic acid for Pb2+, Cu2+, Zn2+, Ba2+, Ca2+, and Sr2+, and compared with those of extractive-free Sphagnum and other mosses, their chlorite holocelluloses, and two soluble fragments of Sphagnum holocellulose, prepared by acidic and alkaline degradation, respectively. The humic acid showed considerably higher KMgMe values than most of the control materials, the enhancement being especially marked for Pb2+, Cu2+, and Ca2+. Scatchard plots showed that both parts of the glycoconjugate contributed to its selectivity, and that the selectivity of the carbohydrate part was greater in the humic acid than in the holocellulose or its soluble fragments. The results are explained by assuming that there are enhanced possibilities for cross-linking in the colloidal humic-acid complexes.  相似文献   

17.
The stress-gradient hypothesis (SGH) predicts that the relative importance of competition decreases and facilitation increases with an increase in abiotic stress. In peatlands, Sphagnum faces the threat of drought and differentiates into hummock species (drought-tolerant) and hollow species. Whether interspecific interaction affects the influence of drought on bryophyte composition in peatlands is unknown. We established an experiment by simulating drought and building bryophyte communities with two hummock species (S. palustre and S. capillifolium) and one hollow species (S. fallax). In all three species, drought decreased biomass production, height increment and side-shoot production. Sphagnum stores water in the hyaline cells, and leaf hyaline cell percentage (HCP) in the two hummock species increased with drought while no effect was found in S. fallax, suggesting that adjusting HCP is not an effective response to drought for the hollow species. Morphological traits and carbon and nitrogen contents in hummock species responded more to drought than in the hollow species, indicating a rapid response in phenotypic plasticity is an important strategy to resist drought in the hummock species. The presence of neighboring Sphagnum species, rather than drought, decreased carbon content for all three species. All three bryophytes showed interaction between drought and neighbor in two or more plant traits. Our study, however, did not support SGH, and there were no changes from competition under wet to facilitation under dry treatments in any of the six species combinations. On the contrary, when S. fallax was the target species, a change from facilitation under wet to competition under dry treatments was observed. The results suggest that hummock species can facilitate hollow species in wet environments but they could suppress hollow species under drought conditions by competing for water resources. Both drought and strong competition are the probable reasons why hollow species rarely grow in hummocks.  相似文献   

18.
In Europe peatlands are wetlands of postglacial origin. Because of climatic changes and agricultural activities (i.e. drainage and peat extraction), they are one of the most endangered ecosystems worldwide. Water mites are well known as indicators of changing environments in other ecosystems such as springs and lakes. For our study we selected seven peatlands located in North-Western Poland and focused on water mite distribution and associated habitat and water quality variables. We described water mite fauna in various microhabitats (aquatic and semiaquatic) along the mineral-richness gradient to test whether this gradient is reflected in the composition of water mite assemblages. We selected conductivity, pH and vegetation as variables reflecting the poor-rich gradient. Additionally, we measured water depth, temperature and dissolved oxygen, which are often important parameters for water mites. We also noted presence of prey and host taxa of particular water mite species. Based on physicochemical parameters we identified three types of habitats harbouring three distinctive species groups of water mites. We were able to distinguish species that appear to be typical of spring fens (e.g. Hygrobates norvegicus, Lebertia separata), connected with acidic, nutrient poor pools (e.g. Arrenurus neumani, A. pustulator) and species seemingly typical of temporary habitats dominated by Sphagnum mosses (e.g. Piersigia intermedia, Zschokkea oblonga, A. stecki). The poor-rich gradient is strongly reflected in the composition of water mite assemblages. We also found strong correlations between the water mite fauna and both conductivity and pH gradient. Our results show that water conductivity is the most important of the examined factors, driving mite-species distribution in peatlands.  相似文献   

19.

Background and aims

Peatland moss communities play an important role in ecosystem function. Drivers such as fire and atmospheric pollution have the capacity to influence mosses via multiple pathways. Here, we investigate physical and chemical processes which may influence establishment and growth of three key moss species in peatlands.

Methods

A controlled factorial experiment investigated the effects of different peat bulk density, ash deposition and rainwater chemistry treatments on the growth of Sphagnum capillifolium, S. fallax and Campylopus introflexus.

Results

Higher peat bulk density limited growth of both Sphagnum species. S. capillifolium and C. introflexus responded positively to ash deposition. Less polluted rain limited growth of C. introflexus. Biomass was well correlated with percentage cover in all three species.

Conclusions

Peat bulk density increases caused by fire or drainage can limit Sphagnum establishment and growth, potentially threatening peatland function. Ash inputs may have direct benefits for some Sphagnum species, but are also likely to increase competition from other bryophytes and vascular plants which may offset positive effects. Rainwater pollution may similarly increase competition to Sphagnum, and could enhance positive effects of ash addition on C. introflexus growth. Finally, cover can provide a useful approximation of biomass where destructive sampling is undesirable.
  相似文献   

20.
Symbiotic relationships between N2-fixing prokaryotes and their autotrophic hosts are essential in nitrogen (N)-limited ecosystems, yet the importance of this association in pristine boreal peatlands, which store 25 % of the world’s soil (C), has been overlooked. External inputs of N to bogs are predominantly atmospheric, and given that regions of boreal Canada anchor some of the lowest rates found globally (~1 kg N ha?1 year?1), biomass production is thought to be limited primarily by N. Despite historically low N deposition, we show that boreal bogs have accumulated approximately 12–25 times more N than can be explained by atmospheric inputs. Here we demonstrate high rates of biological N2-fixation in prokaryotes associated with Sphagnum mosses that can fully account for the missing input of N needed to sustain high rates of C sequestration. Additionally, N amendment experiments in the field did not increase Sphagnum production, indicating that mosses are not limited by N. Lastly, by examining the composition and abundance of N2-fixing prokaryotes by quantifying gene expression of 16S rRNA and nitrogenase-encoding nifH, we show that rates of N2-fixation are driven by the substantial contribution from methanotrophs, and not from cyanobacteria. We conclude biological N2-fixation drives high sequestration of C in pristine peatlands, and may play an important role in moderating fluxes of methane, one of the most important greenhouse gases produced in peatlands. Understanding the mechanistic controls on biological N2-fixation is crucial for assessing the fate of peatland carbon stocks under scenarios of climate change and enhanced anthropogenic N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号