首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously demonstrated the partial protection of the rat liver by 16,16-dmPGE2 (DMPG) against a number of hepatotoxins including carbon tetrachloride (CCl4). However, it has not been determined whether hepatoprotection by DMPG represents a true "cytoprotective" action or if merely accomplished through inhibition of CCl4 metabolism to reactive, toxic trichoromethyl (CCl3.) free radicals. This report details a series of experiments in which the effects of DMPG on CCl4 metabolism was evaluated in the rat. These data indicate that pretreatment with DMPG may reduce the hepatic concentration of the toxic CCl3. free radicals in CCl4 poisoned rats. Evidence is presented which suggests that this reduction in binding may have been due to a decrease in the rate of CCl4 metabolism. However, DMPG did not affect the hepatic concentration of total microsomal cytochrome P450, the necessary enzyme in this metabolic process. On the other hand, free radical spin trapping experiments indicate that the rate of free radical formation from CCl4 was slowed by treatment. Also, indirect evidence suggests that the metabolism of another cytochrome P450 substrate, phenobarbital, was slowed in DMPG treated rats. We conclude that the rate of CCl4 metabolism may be reduced by pretreatment with DMPG. Furthermore, some measure of hepatic protection might be expected to occur as a result of the reduction in the rate of CCl4 metabolism. However, we are unable to determine if this action was solely responsible for the observed hepatic protection.  相似文献   

2.
Autoprotection is a phenomenon whereby prior exposure to a small dose of a chemical results in protection against a subsequently administered lethal dose of the same compound. While CCl4 autoprotection has been studied the most, it has also been demonstrated for other chemicals. Recent studies indicate that the prevailing concept of decreased bioactivation of the normally lethal dose of CCl4 owing to decreased hepatic microsomal cytochrome P-450
  • 1 Abbreviations used: CD, chlordecone; cyt. P-450, cytochromes P-450; M, mirex; N, normal diet; PB, phenobarbital.
  • content can not be supported by direct end points of liver injury such as necrosis. These findings suggest a pivotal role for hepatocellular division and tissue healing processes stimulated by the protective dose in the mechanism of autoprotection. Augmentation of hepatocellular regeneration and tissue repair, stimulated by the protective dose, appears to permit timely recovery and restoration of hepatic structure and function. In the absence of the protective dose, hepatocellular division is substantially deficient and it occurs too late to tip the delicate balance between recovery from injury and progression of massive injury in favor of recovery. Abolition of autoprotection by colchicine antimitosis, under conditions where metabolism and disposition of CCl4 are not altered, is supportive of this concept. Selective colchicine antimitotic suppression of the early phase of hepatocellular division and tissue repair induced by a low dose of CCl4 results in progression of toxic liver injury, leading to hepatic failure and mortality. Studies have shown that pretreatment with phenobarbital results in postponed low-dose CCl4-stimulated cell division by 24 hours, which accordingly postpones the optimal autoprotection. These findings provide discrete evidence to suggest that the protective dose-stimulated hepatocellular division and tissue repair underlies the mechanism of autoprotection. These new insights reveal that in contrast to the widely held concept, the ultimate outcome of toxic injury is determined by whether a prompt stimulation of sustainable tissue repair can occur rather than by the magnitude of the injury inflicted by a toxic chemical.  相似文献   

    3.
    Our study was undertaken to evaluate the important role that a disintegrin and metalloproteinase 9 (ADAM9) regulates IL‐6 trans‐signaling in carbon tetrachloride (CCl4)‐induced liver injury in mice. Mice were divided into four groups. Each group respectively received mineral oil injection, CCl4 injection, anti‐ADAM9 monoclonal antibody (mAb) pretreatment and CCl4 injection, anti‐ADAM9 mAb and recombinant mouse ADAM9 molecules pretreatment with CCl4 injection. Our results showed that anti‐ADAM9 mAb pretreatment significantly aggravated liver injury, inhibited IL‐6 trans‐signaling, which led to downregulation of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), upregulation of Caspase3, cytochrome P450 2E1 (CYP2E1), and hepatocytes apoptosis at 24 h after CCl4 injection. Recombinant ADAM9 molecules pretreatment reversed the impact of anti‐ADAM9 mAb pretreatment in mice. In conclusion, our study suggested that ADAM9 could regulate the hepatocytes proliferation, apoptosis, angiogenesis, and CYP2E1 expression by activating IL‐6 trans‐signaling and play important protective roles during CCl4‐induced liver injury in mice.  相似文献   

    4.
    5.
    In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

    6.
    Administration of allylisopropylacetamide (AIA) or CCl4 to rats previously treated with phenobarbital leads to a rapid decrease in cytochrome P450 within 1 hr. The amount of cytochrome b5 and NADPH cytochrome c reductase in liver microsomes remains unchanged following AIA treatment. In contrast, CCl4 administration causes a decrease in total microsomal protein thus leading to a net loss in cytochrome b5 and NADPH cytochrome c reductase. By using 3H-δ-aminolevulinic acid to label microsomal cytochrome P450 heme, the effect of AIA and CCl4 on this cytochrome was shown to be caused by destruction of preexisting CO-binding pigment and not from inhibition of synthesis. In addition, the breakdown products of cytochrome P450 heme accumulate in the liver after AIA or CCl4 treatment.  相似文献   

    7.
    There is a higher activity of ethyl morphine N-demethylase (EM-ase) and cytochrome P-450 (P-450) reductase as well as higher P-450 content in the smooth endoplasmic reticulum (SER) than in the rough endoplasmic reticulum (RER). The extent of the irreversible binding of the14C from14CCl4 to lipids and proteins, as well as the CCl4-induced destruction of P-450 is more intense in SER than in RER while the opposite was found for glucose 6-phosphatase (G6P-ase) destruction. CCl4-induced lipid peroxidation is as intense in SER as is in RER.14C from14CCl4 gets irreversibly bound to ribosomal proteins.  相似文献   

    8.
    Summary Benzoyl peroxide catalytic decomposition of carbon tetrachloride in a model system produces trichloromethyl and trichloromethylperoxyl free radicals. These radicals are also produced by CCl4 bioactivation in liver and are considered to be responsible for the deleterious effects of this hepatotoxin. In this study, it is attempted to learn about how the .CCl3 and CCl3O2. tend to react with hydroxyproline in a model system. Hydroxyproline was selected because of its role in collagen metabolism. During the interaction of both radicals with hydroxyproline a total of 16 reaction products were isolated and identified by gas chromatographic-mass spectrometric analysis. All of them were hydroxyproline analogs, no single one contained C from CCl4 and only three contained chlorine. Consequently, most adducts would be missed in experiments where formation of reaction products are studied by formation of14C or36Cl labeled adducts (e.g. covalent binding studies used by toxicologists). If similar hydroxyproline analog reaction products were observed during CCl4 intoxication it might be reasonably expected that they interfered with collagen metabolism and participate in cirrhogenic effects of CCl4 on the liver.  相似文献   

    9.
    This study elucidated the effects of cornuside on carbon tetrachloride (CCl4)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl4. Sixteen h after CCl4 treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl4-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl4 treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl4-treated rats. Our data indicate that cornuside protects the liver from CCl4-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

    10.
    The irreversible binding of14C from14CCl4 to microsomal lipids is decreased in animals treated with 3-methylcholantrene (3-MC), while it is increased in animals induced with phenobarbital (PB). CCl4-induced lipid peroxidation in 3-MC treated rats is as intense as in controls. Destruction of glucose 6-phosphatase (G6P-ase) by CCl4 is smaller in 3-MC treated rats than in controls. Destruction of total cytochrome P-450 (P-450 + P1-450) by CCl4 is smaller in 3-MC treated than in PB treated rats but similar to that obtained in controls. Results would indicate that P-450 would participate in CCl4 activation much more effectively than P1-450.  相似文献   

    11.
    We examined the effects of isopropanol (ISOP) pretreatment on the metabolism of 14CCl4 to 14CO2 and CHCl3 exhaled in the breath, to 14C metabolite excreted in 24 hr urine and feces from 0 to 24 hr, and to 14C metabolite bound to liver at 24 hr. Fasted male rats were given 0.1 or 2.0 mmoles 14CCl4/kg. ISOP pretreatment, which markedly enhanced the hepatotoxicity of CCl4, selectively enhanced the rate and total extent of 14CO2 and CHCl3 metabolite exhalation. The pathways of CCl4 metabolism leading to CO2 and CHCl3 metabolite formation may be more relevant to the hepatotoxicity of CCl4 than the pathways leading to urinarym fecal or covalently bound metabolites.  相似文献   

    12.
    Summary.  The results regarding taurine pretreatment on CCl4-induced hepatic injury are controversial. To assess the therapeutic efficacy of taurine on rat liver injury, hepatic malondialdehyde, glutathione, and hydroxyproline levels together with morphologic alterations in the liver following CCl4 administration were investigated. The rats were divided into three groups. Taurine-treated animals received 15 ml/kg/day of a 5% taurine solution by a gastric tube for 5 days before administering CCl4 (2 ml/kg, intraperitoneally, in a single dose). CCl4-treated rats received the same amount of saline solution. Control animals received no treatment. The increase of hepatic malondialdehyde formation in the CCl4-treated group was partially prevented by taurine pretreatment, but taurine had no significant effect on the glutathione and hydroxyproline content in the CCl4-treated rats. Taurine pretreatment induced a marked beneficial effect regarding the prevention of hepatocellular necrosis and atrophy as demonstrated morphologically. In conclusion, these results suggest that taurine pretreatment might not significantly change the biochemical parameters, but prevents the morphologic damage caused by CCl4 in the early stages. Received March 17, 2001 Accepted July 18, 2001  相似文献   

    13.
    The effects of schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, and dimethyl diphenyl bicarboxylate (DDB), a synthetic intermediate of schisandrin C (also a dibenzocyclooctadiene derivative), on hepatic mitochondrial glutathione redox status in control and carbon tetrachloride (CCl4)-intoxicated mice were examined. Treating mice with Sch B or DDB at a daily oral dose of 1 mmol/kg for 3 d did not produce any significant alterations in plasma alanine aminotransferase (ALT) and sorbital dehydrogenase (SDH) activities. CCl4 treatment caused drastic increases in both plasma ALT and SDH activities in mice. Pretreating mice with Sch B or DDB at the same dosage regimen significantly suppressed the CCl4-induced increase in plasma ALT activity, with the inhibitory effect of Sch B being much more potent. Sch B, but not DDB, pretreatment could also decrease the plasma SDH activity in CCl4-intoxicated mice. The lowering of plasma SDH activity, indicative of hepatoprotection against CCl4 toxicity, by Sch B pretreatment was associated with an enhancement in hepatic mitochondrial glutathione redox status as well as an increase in mitochondrial glutathione reductase (mtGRD) activity in both non-CCl4 and CCl4-treated mice. DDB pretreatment, though enhancing both hepatic mitochondrial glutathione redox status and mtGRD activity in control animals, did not produce any beneficial effect in CCl4-treated mice. The difference in hepatoprotective action against CCl4 toxicity between Sch B and DDB may therefore be related to their ability to maintain hepatic mitochondrial glutathione redox status under oxidative stress condition.  相似文献   

    14.
    Studies were conducted to assess the possible protective action of 16,16-dimethyl prostaglandin E2 (DMPG) against acute aflatoxin B1 (AFB1) induced hepatic injury in the rat. Evaluation of liver damage of histopathologic techniques and clinical chemistry indicated that hepatic necrosis was ameliorated by treatment with DMPG even though binding of radiolabeled (3H)-AFB1 to hepatic DNA was unaffected by this prostaglandin. However, DMPG did not protect rats against AFB1-induced mortality. These data suggest that hepatic protection by DMPG was due to mechanisms other than an interference with the activation or hepatic binding of AFB1.  相似文献   

    15.
    The role of pH in uncoupling the electron-flux between oxidoreductase and cytochrome P450 (P450) or P450 and cyclosporine (CyA) and resulting in the generation of oxygen radicals was investigatedin vitro in rat and human liver microsomal preparations. Since the electron-flux from NADPH to cytochrome c via oxidoreductase showed a fairly constant reduction activity from pH 7.0–9.5, the generation of oxygen radicals at the level of P450-Cyclosporine (instead of oxidoreductase-P450) was investigated. The effects of increasing pH on oxygen radical formation was measured by the thiobarbituric acid assay (TBA) and the adrenochrome reaction. The trends in oxygen radical production were correlated with benzphetamine metabolism (production of formaldehyde) and CyA metabolism (analyzed by high performance liquid chromatography). The TBA assay showed increased MDA-detected lipid peroxidation (unrelated to autooxidation) at pH<8.0 and pH>8.0 (rat and human, respectively) while the adrenochrome reaction showed decreased oxygen radical production. When these results were compared to benzphetamine (a substrate of P450 2B and 3A) metabolism and CyA (a substrate of P450 3A) metabolism, increased metabolism followed the pH-dependent trend of MDA-detected lipid peroxidation. Benzphetamine metabolism with formaldehyde production and depletion of parent compound during CyA metabolism were increased at pH<8.0 in the rat samples and at pH>8.0 in the human samples. This parallel relation suggests that the increased metabolism of CyA at lower pH in rats and higher pH in humans may be the result of favorable interactions of P450 with Cyclosporine that also result in increased oxygen radical-related lipid peroxidation.Abbreviations CCl4 carbon tetrachloride - CyA cyclosporin A - EDTA ethylenediaminetetraacetic acid - HPLC high performance liquid chromatography - MDA malondialdehyde - MFO mixed function oxidase - MICROS microsomes - NADPH nicotinamide adenine dinucleotide phosphate - TBA thiobarbituric acid This work was supported by Grant No. CA-53191 from the National Cancer Institute DHHW  相似文献   

    16.
    Exposure of isolated rat hepatocytes to hepatotoxic halomethanes results in a 40–60% decrease in intracellular Ca2+ content. The order of halomethane potency (CBrCl3 CCl4 CHCl3) suggests that this effect requires halomethane metabolism by the hepatic mixed function oxidase system. Although the Ca2+ sequestering ability of the endoplasmic reticulum is destroyed by CBrCl3 and CCl4, it appears that much of the Ca2+ lost from the cell is mitochondrial in origin. Paradoxically, saturating concentrations of CCl4 cause a marked increase in cell Ca2+. CCl4 also causes an acute increase in cytoplasmic free Ca2+ (from about 60 nM to about 90 nM), but this effect does not appear to require CCl4 metabolism and is probably a result of direct action of CCl4 on the plasma membrane.  相似文献   

    17.
    The study was evaluated to investigate the efficacy of selenocystine (CysSeSeCys), a well-known organoselenium compound, on the prevention of carbon tetrachloride (CCl4)-induced acute hepatic injury in Wistar rats. Forty healthy male Wistar rats were utilized in this study. Acute hepatotoxicity was induced by CCl4 intoxication in rats. Serum biological analysis, oxidative stress, immune parameters, and gene expression of COX-2 and CYP2E1 were carried out. Pretreatment of CysSeSeCys prior to CCl4 administration significantly prevented an increase in serum hepatic enzymatic activities. In addition, pretreatment of CysSeSeCys significantly prevented the formation of ROS, MDA, depletion of glutathione, and alteration of antioxidant enzyme activities in the liver of CCl4-intoxicated rats. This study also revealed that pretreatment with CysSeSeCys normalized the levels of interleukin 6 and10, IgG, and CD4 cell count. Pretreatment of CysSeSeCys significantly reversed COX-2 inflammatory response and the upregulation of CYP2E1 expression as well. Histopathological changes induced by CCl4 were also significantly attenuated by CysSeSeCys pretreatment. CysSeSeCys has a potent hepatoprotective effect on CCl4-induced liver injury in rats through its antioxidative, immunomodulatory and anti-inflammatory activity.  相似文献   

    18.
    The metabolism of nitroprusside by hepatocytes or subcellular fractions involves a one-electron reduction of nitroprusside to the corresponding metal-nitroxyl radical. Thiol compounds also reduced nitroprusside to the metal-nitroxyl radical apparently via a thiol adduct. The nitroprusside reduction by microsomes was shown to be due to cytochrome P450 reductase as an antibody to cytochrome P450 reductase inhibits the microsomal reduction of nitroprusside, and the inhibitors of cytochrome P450 such as carbon monoxide or metyrapone had no effect. The reduction of nitroprusside by mitochondria in the presence of NADH or NADPH also produced the metal-nitroxyl radical. In hepatocytes, both mitochondria and the cytochrome P450 reductase are involved in the reduction of nitroprusside. The reductive metabolism of nitroprusside was found to produce toxic by-products, namely, free cyanide anion and hydrogen peroxide. We have also detected thiyl radicals formed in the thiol compound reduction of NP. We propose that cyanide and hydrogen peroxide are important toxic species formed in the metabolism of nitroprusside. The rate of reductive metabolism of nitroprusside by rat hepatocytes was much higher than with human erythrocytes. Therefore the major site of nitroprusside metabolism in vivo may be liver and not blood as originally proposed.  相似文献   

    19.
    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.  相似文献   

    20.
    After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced oxidative stress: the increased MDA formation by incubated liver preparations, the absorption of conjugated dienes in mitochondrial and microsomal lipids and the decrease in the most unsaturated fatty acids in liver cell membranes are discussed. The formation of carbon-centered (1-hydroxyethyl) and oxygen-centered (hydroxyl) radicals during the metabolism of ethanol is considered: the generation of hydroxyethyl radicals, which occurs likely during the process of univalent reduction of dioxygen, is highlighted and is carried out by ferric cytochrome P450 oxy-complex (P450–Fe3+O2·−) formed during the reduction of heme-oxygen. The ethanol-induced lipid peroxidation has been evaluated, and it has been shown that plasma F2-isoprostanes are increased in ethanol toxicity.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号