首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dock, the Drosophila orthologue of Nck, is an adaptor protein that is known to function in axonal guidance paradigms in the fly including proper development of neuronal connections in photoreceptor cells and axonal tracking in Bolwig's organ. To develop a better understanding of axonal guidance at the molecular level, we purified proteins in a complex with the SH2 domain of Dock from fly Schneider 2 cells. A protein designated p145 was identified and shown to be a tyrosine kinase with sequence similarity to mammalian Cdc-42-associated tyrosine kinases. We demonstrate that Drosophila Ack (DAck) can be co-immunoprecipitated with Dock and DSH3PX1 from fly cell extracts. The domains responsible for the in vitro interaction between Drosophila Ack and Dock were identified, and direct protein-protein interactions between complex members were established. We conclude that DSH3PX1 is a substrate for DAck in vivo and in vitro and define one of the major in vitro sites of DSH3PX1 phosphorylation to be Tyr-56. Tyr-56 is located within the SH3 domain of DSH3PX1, placing it in an important position for regulating the binding of proline-rich targets. We demonstrate that Tyr-56 phosphorylation by DAck diminishes the DSH3PX1 SH3 domain interaction with the Wiskott-Aldrich Syndrome protein while enabling DSH3PX1 to associate with Dock. Furthermore, when Tyr-56 is mutated to aspartate or glutamate, the binding to Wiskott-Aldrich Syndrome protein is abrogated. These results suggest that the phosphorylation of DSH3PX1 by DAck targets this sorting nexin to a protein complex that includes Dock, an adaptor protein important for axonal guidance.  相似文献   

3.
Most aspects of cellular events are regulated by a series of protein phosphorylation and dephosphorylation processes. Abi (Abl interactor protein) functions as a substrate adaptor protein for Abl and a core member of the WAVE complex, relaying signals from Rac to Arp2/3 complex and regulating actin dynamics. It is known that the recruitment of Abi into the lamella promotes polymerization of actin, although how it does this is unclear. In this study, we found PTP61F, a Drosophila homolog of mammalian PTP1B, can reverse the Abl phosphorylation of Abi and colocalizes with Abi in Drosophila S2 cells. Abi can be translocalized from the cytosol to the cell membrane by either increasing Abl or reducing endogenous PTP61F. This reciprocal regulation of Abi phosphorylation is also involved in modulating Abi protein level, which is thought to affect the stability of the WAVE complex. Using mass spectrometry, we identified several important tyrosine phosphorylation sites in Abi. We compared the translocalization and protein half-life of wild type (wt) and phosphomutant Abi and their abilities to restore the lamellipodia structure of the Abi-reduced cells. We found the phosphomutant to have reduced ability to translocalize and to have a protein half-life shorter than that of wt Abi. We also found that although the wt Abi could fully restore the lamellipodia structure, the phosphomutant could not. Together, these findings suggest that the reciprocal regulation of Abi phosphorylation by Abl and PTP61F may regulate the localization and stability of Abi and may regulate the formation of lamella.  相似文献   

4.
During embryonic development of the peripheral nervous system (PNS), Schwann cell precursors migrate along neuronal axons to their final destinations, where they will myelinate the axons after birth. While the intercellular signals controlling Schwann cell precursor migration are well studied, the intracellular signals controlling Schwann cell precursor migration remain elusive. Here, using a rat primary cell culture system, we show that Dock8, an atypical Dock180-related guanine-nucleotide exchange factor (GEF) for small GTPases of the Rho family, specifically interacts with Nck1, an adaptor protein composed only of Src homology (SH) domains, to promote Schwann cell precursor migration induced by platelet-derived growth factor (PDGF). Knockdown of Dock8 or Nck1 with its respective siRNA markedly decreases PDGF-induced cell migration, as well as Rho GTPase activation, in precursors. Dock8, through its unique N-terminal proline-rich motif, interacts with the SH3 domain of Nck1, but not with other adaptor proteins composed only of SH domains, e.g. Grb2 and CrkII, and not with the adaptor protein Elmo1. Reintroduction of the proline-rich motif mutant of Dock8 in Dock8 siRNA-transfected Schwann cell precursors fails to restore their migratory abilities, whereas that of wild-type Dock8 does restore these abilities. These results suggest that Nck1 interaction with Dock8 mediates PDGF-induced Schwann cell precursor migration, demonstrating not only that Nck1 and Dock8 are previously unanticipated intracellular signaling molecules involved in the regulation of Schwann cell precursor migration but also that Dock8 is among the genetically-conservative common interaction subset of Dock family proteins consisting only of SH domain adaptor proteins.  相似文献   

5.
Protein-tyrosine phosphatase 1B (PTP1B) is an important negative regulator of insulin and leptin signaling in vivo. Mice lacking PTP1B (PTP1B-/- mice) are hyper-responsive to insulin and leptin and resistant to diet-induced obesity. The tissue(s) that mediate these effects of global PTP1B deficiency remain controversial. We exploited the high degree of hepatotropism of adenoviruses to assess the role of PTP1B in the liver. Liver-specific re-expression of PTP1B in PTP1B-/- mice led to marked attenuation of their enhanced insulin sensitivity. This correlated with, and was probably caused by, decreased insulin-stimulated tyrosyl phosphorylation of the insulin receptor (IR) and IR substrate 2-associated phosphatidylinositide 3-kinase activity. Analysis using phospho-specific antibodies for the IR revealed preferential dephosphorylation of Tyr-1162/1163 compared with Tyr-972 by PTP1B in vivo. Our findings show that the liver is a major site of the peripheral action of PTP1B in regulating glucose homeostasis.  相似文献   

6.
Ruan W  Pang P  Rao Y 《Neuron》1999,24(3):595-605
Recent studies suggest that the SH2/SH3 adaptor Dock/Nck transduces tyrosine phosphorylation signals to the actin cytoskeleton in regulating growth cone motility. The signaling cascade linking the action of Dock/Nck to the reorganization of cytoskeleton is poorly understood. We now demonstrate that Dock interacts with the Ste20-like kinase Misshapen (Msn) in the Drosophila photoreceptor (R cell) growth cones. Loss of msn causes a failure of growth cones to stop at the target, a phenotype similar to loss of dock, whereas overexpression of msn induces pretarget growth cone termination. Physical and genetic interactions between Msn and Dock indicate a role for Msn in the Dock signaling pathway. We propose that Msn functions as a key controller of growth cone cytoskeleton in response to Dock-mediated signals.  相似文献   

7.
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.  相似文献   

8.
The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.  相似文献   

9.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

10.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

11.
We have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization. Any one of three phosphorylated (p)YDXV motifs on nephrin is sufficient to recruit Nck through its Src homology 2 (SH2) domain and induce localized actin polymerization at these clusters. Similarly, Nck SH3 mutants in which only the second or third SH3 domain is functional can mediate nephrin-induced actin polymerization. However, combining such nephrin and Nck mutants attenuates actin polymerization at nephrin-Nck clusters. We propose that the multiple Nck SH2-binding motifs on nephrin and the multiple SH3 domains of Nck act cooperatively to recruit the high local concentration of effectors at sites of nephrin activation that is required to initiate and maintain actin polymerization in vivo. We also find that YDXV motifs in the Tir protein of enteropathogenic Escherichia coli and nephrin are functionally interchangeable, indicating that Tir reorganizes the actin cytoskeleton by molecular mimicry of nephrin-like signaling. Together, these data identify pYDXV/Nck signaling as a potent and portable mechanism for physiological and pathological actin regulation.  相似文献   

12.
PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.  相似文献   

13.
PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.  相似文献   

14.
We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems.  相似文献   

15.
16.
Type 2 Diabetes mellitus (T2D) is the most common endocrine disorder associated to metabolic syndrome (MS) and occurs when insulin secretion can no compensate peripheral insulin resistance. Among peripheral tissues, the liver controls glucose homeostasis due to its ability to consume and produce glucose. The molecular mechanism underlying hepatic insulin resistance is not completely understood; however, it involves the impairment of the insulin signalling network. Among the critical nodes of hepatic insulin signalling, insulin receptor substrate 2 (IRS2) and protein tyrosine phosphatase 1B (PTP1B) modulate the phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 pathway that controls the suppression of gluconeogenic genes. In this review, we will focus on recent findings regarding the molecular mechanism by which IRS2 and PTP1B elicit opposite effects on carbohydrate metabolism in the liver in response to insulin. Finally, we will discuss the involvement of the critical nodes of insulin signalling in non-alcoholic fatty liver disease (NAFLD) in humans.  相似文献   

17.
PTP1B has been shown to be a negative regulator of the insulin signal transduction in insulin resistant states. Herein we investigated IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of 10 and 28-week-old MSG-insulin resistant rats which represent different stages of insulin resistance. Our results demonstrated that the increase in PTP1B expression and/or association with IR in MSG animals may contribute to the impaired insulin signaling mainly in liver and muscle. Although, adipose tissue of 10-week-old MSG rats showed higher PTP1B expression and IR/PTP1B interaction, they were not sufficient to impair all insulin signaling since IRS-2 phosphorylation and association with PI3-kinase and Akt serine phosphorylation were increased, which may contribute for the increased adiposity of these animals. In 28-week-old-MSG rats there was an increase in IR/PTP1B interaction and reduced insulin signaling in liver, muscle and adipocytes, and a more pronounced insulin resistance.  相似文献   

18.
H Hing  J Xiao  N Harden  L Lim  S L Zipursky 《Cell》1999,97(7):853-863
The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.  相似文献   

19.
PTP1B is a protein tyrosine phosphatase that negatively regulates insulin sensitivity by dephosphorylating the insulin receptor. Akt is a ser/thr kinase effector of insulin signaling that phosphorylates substrates at the consensus motif RXRXXS/T. Interestingly, PTP1B contains this motif (RYRDVS(50)), and wild-type PTP1B (but not mutants with substitutions for Ser(50)) was significantly phosphorylated by Akt in vitro. To determine whether PTP1B is a substrate for Akt in intact cells, NIH-3T3(IR) cells transfected with either wild-type PTP1B or PTP1B-S50A were labeled with [(32)P]-orthophosphate. Insulin stimulation caused a significant increase in phosphorylation of wild-type PTP1B that could be blocked by pretreatment of cells with wortmannin or cotransfection of a dominant inhibitory Akt mutant. Similar results were observed with endogenous PTP1B in untransfected HepG2 cells. Cotransfection of constitutively active Akt caused robust phosphorylation of wild-type PTP1B both in the absence and presence of insulin. By contrast, PTP1B-S50A did not undergo phosphorylation in response to insulin. We tested the functional significance of phosphorylation at Ser(50) by evaluating insulin receptor autophosphorylation in transfected Cos-7 cells. Insulin treatment caused robust receptor autophosphorylation that could be substantially reduced by coexpression of wild-type PTP1B. Similar results were obtained with coexpression of PTP1B-S50A. However, under the same conditions, PTP1B-S50D had an impaired ability to dephosphorylate the insulin receptor. Moreover, cotransfection of constitutively active Akt significantly inhibited the ability of wild-type PTP1B, but not PTP1B-S50A, to dephosphorylate the insulin receptor. We conclude that PTP1B is a novel substrate for Akt and that phosphorylation of PTP1B by Akt at Ser(50) may negatively modulate its phosphatase activity creating a positive feedback mechanism for insulin signaling.  相似文献   

20.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号