首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human cancer chemotherapy is limited by two major problems: the failure of commonly used anticancer drugs to act against tumor cells in a specific manner and the ability of malignant cells to resist killing by antineoplastic agents. Experimentally, both of these problems can be solved by using L-histidinol in combination with conventional anticancer drugs. A structural analogue of the essential amino acid L-histidine and an inhibitor of protein biosynthesis. L-histidinol improves the selectivity and the efficacy of a variety of cancer drugs in several transplantable murine tumors. Furthermore, L-histidinol circumvents the drug-resistant traits of a variety of cancer cells, including those showing multidrug resistance. This review will summarize these properties of L-histidinol, present new evidence on its ability to increase the vulnerability of both drug-sensitive and drug-resistant human leukemia cells to various anticancer drugs, and show that, in addition to inhibiting protein synthesis, L-histidinol acts as an intracellular histamine antagonist. The establishment of a connection between the latter mechanism and the capacity to modulate anticancer drug action has resulted in a clinical trial in the treatment of human cancer.  相似文献   

2.
The development of new anticancer drugs is a salient problem and the traditional use of plants is a potentially rich source of information for detecting new molecules with antineoplastic activity. Riproximin is a recently detected cytotoxic type II ribosome inactivating protein with high selectivity for certain tumor cell lines. Its activity was recognized as the main component in a plant powder used by African healers for treating cancer. By ribulose bisphosphate carboxylase gene sequencing analysis, the powder was identified to be derived from the plant Ximenia americana. The cDNA sequence of riproximin was identified, the protein was modeled to contain one A- and a B-chain, respectively, and a reliable purification procedure from kernels of X. americana was established. Riproximin displays high but differential antiproliferative activity in a panel of human and rodent cancer cell lines, with concentrations inhibiting cell proliferation by 50% (IC50 values) that diverge by a factor of 100. Consistent antineoplastic activity was detected in colorectal and pancreatic cancer liver metastasis models in rats. The cytotoxic mechanism of action was determined to be based on cellular uptake of riproximin followed by its A-chain prompted depurination of the 28S ribosomal RNA and induction of unfolded protein response. Riproximin's specificity depended on its B-chain connected binding to cell surface glycans, the presence of which is crucial for subsequent internalization into cells and cytotoxicity. These N- and O-glycans include bi- and tri-antennary NA structures (NA2/NA3) as well as Tn3 structures (clustered Tn antigen). Riproximin was found to crosslink proteins with N- and O-glycan structure, thus indicating both types of binding sites on its B chain. Due to this crosslinking ability, riproximin is expected to show prominent cytotoxicity towards cells expressing both, NA2/NA3 and clustered Tn structures. Apart from the properties of riproximin, the plant X. americana has been known for some medical uses in traditional African medicine, including various types of infections.  相似文献   

3.
A series of dimeric phloroglucinol compounds were synthesized in a single step using commercially available phloroglucinol and methanesulfonic acid. Based on the reported anticancer activity of plant derived dimeric phloroglucinols, these synthesized compounds were evaluated for their in vitro anti-proliferative activities against various cancer cell lines. Several compounds demonstrated in vitro cytotoxic effects across a wide array of tumor cell types. The compound 29 with pyridin-3-yl group on linker methylene and two diisovaleryl phloroglucinol moieties was found to be the most active in all the five cancer cell lines having a low IC(50) of 5.5 μM in colon cancer cell lines (HCT116).  相似文献   

4.
Green tea catechins have been extensively studied for their cancer preventive effects. Accumulating evidence has shown that green tea catechins, like (?)-epigallocatechin-3-gallate, have strong anti-oxidant activity and affect several signal transduction pathways relevant to cancer development. Here, we review the biological properties of green tea catechins and the molecular mechanisms of their anticancer effects, including the suppression of cancer cell proliferation, induction of apoptosis, and inhibition of tumor metastasis and angiogenesis. We summarize the efficacy of a single catechin and the synergetic effects of multiple catechins. We also discuss the enhanced anticancer effects of green tea catechins when they are combined with anticancer drugs. The information present in this review might promote the development of strategy for the co-administration of green tea catechins with other anticancer drugs to increase the potency of currently available anticancer medicine. This new strategy should in turn lower the cytotoxicity and cost of anticancer treatment.  相似文献   

5.
Flavonoids are polyphenolic compounds that occur ubiquitously in foods of plant origin. Some of these molecules exhibit various physiological activities. Among existing drugs, there are a huge number of compounds bearing a flavonoid-related skeleton. Because of the relevance for pharmaceutical research, it would be beneficial to collect these compounds into a database. Recently, various databases of chemicals were compiled to help biological and/or chemical research, but no comprehensive database of flavonoids with chemical structures and physicochemical parameters, supposedly related to their activity, is available yet. The aim of this research was to merge the information about flavonoids of plant origin and flavonoids used as medicines into a database. Moreover, predictions of activities against various targets were performed using a virtual screening procedure to demonstrate a possible application of the database for pharmaceutical research.  相似文献   

6.
This review considers the current data on the use of nanoparticles of biogenic metals and their oxides in antineoplastic treatment, the role that the metals play in important regulatory and metabolic processes, their immunotropic effects, and the possible effects on the electromagnetic parameters of cell–cell interactions. Analysis of the available data and original in vivo experimental results indicates that the antitumor potential of these agents is underestimated. Avenues of further research that may contribute to the development of new effective anticancer nanotechnologies are discussed.  相似文献   

7.
Alternatives of treatments for multiple myeloma (MM) have become increasingly available with the advent of new drugs such as proteasome inhibitors, thalidomide derivatives, histone deacetylase inhibitors, and antibody drugs. However, high-risk MM cases that are refractory to novel drugs remain, and further optimization of chemotherapeutics is urgently needed.We had achieved asymmetric total synthesis of komaroviquinone, which is a natural product from the plant Dracocephalum komarovi. Similar to several leading antitumor agents that have been developed from natural compounds, we describe the antitumor activity and cytotoxicity of komaroviquinone and related compounds in bone marrow cells. Our data suggested that komaroviquinone-related agents have potential as starting compounds for anticancer drug development.  相似文献   

8.
The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments.  相似文献   

9.
Protoflavones represent a less widespread, unique class of natural flavonoids with a non-aromatic B-ring and a hydroxyl group at C-1′. Due to their recently discovered anticancer activity, these compounds have gotten into the focus of biomedical research during the past few years. The present review aims to give a brief summary on the available literature data on this special class of flavonoids, including their occurrence in plants and their bioactivity. A special emphasis is given on the anticancer potential of these compounds. Attempts for the development of certain synthetic/semi-synthetic protoflavone analogs as anticancer drugs, and structure–activity relationships are also discussed.  相似文献   

10.
Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug–target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug–drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.  相似文献   

11.
The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.  相似文献   

12.
Occupational exposure to anticancer drug--potential and real hazards   总被引:3,自引:0,他引:3  
Many anticancer agents have been shown to be mutagenic, teratogenic and carcinogenic in experimental systems and second malignancies are known to be associated with several specific therapeutic treatments. Anticancer agents thus represent a class of occupational carcinogens, the handling of which should involve no unnecessary exposure. The available methodologies to detect possible exposures from ambient air and from biological samples are discussed, and the published data on results are reviewed. Analytical methods are available for the detection of most frequently used anticancer drugs from all groups, i.e., alkylating agents, mitotic inhibitors, antimetabolites and antibiotics. The ambient samples taken from sites of admixture of cytostatics have often shown detectable, but low concentrations of anticancer agents. Urine samples from patients under chemotherapy as well as from personnel handling the drugs occupationally in hospitals have been analyzed both chemically and for excreted mutagenicity. Both cisplatin and cyclophosphamide have been detected in the urine of patients; furthermore, cyclophosphamide was observed in the urine of nurses who formulate and deliver this drug. Urinary mutagenicity assays have given both positive and negative results in various groups of nursing and pharmacy personnel. Cytogenetic methods have, likewise, been applied for monitoring purposes. Most of the available data concerns chromosome aberrations (CA) or sister-chromatid exchanges (SCE) induced in peripheral blood lymphocytes of patients under chemotherapy. A few studies on groups occupationally exposed to anticancer drugs have given positive results, but also negative reports have appeared for these same cytogenetic parameters. No studies are as yet available on the possible carcinogenic effects of occupational handling of anticancer drugs. Two recent case-referent studies among hospital personnel have pointed to slightly increased risks of disorders in pregnancy outcome; one of the studies has shown an excess of spontaneous abortions and other malformations in children of females with a history of work with anticancer agents.  相似文献   

13.
It is well established that the effectiveness of anticancer drugs may result from combined cytotoxic and differentiation activities on tumor cells. Also, differentiating agents are able to alter the susceptibility of cancer cells to antineoplastic drug therapy. However, the acquisition and/or development of drug resistance that frequently appears in anticancer treatment can impair these interactions between differentiation agents and cytotoxic drugs. In the present study, we report that the acquisition of resistance to anthracyclines in two humans, promyeolocytic leukemia HL-60 and eythroleukemia K562 cell lines, results in a restricted maturation process induced by differentiating agents with respect to that exhibited by their corresponding drug-sensitive counterparts. Interestingly, differentiating agents are able to decrease the overexpression of drug-efflux pumps as it is the case of MRP1 in the resistant HL-60 cells, thus increasing the sensitivity of cells to drug treatment. In addition, susceptibility of the drug-sensitive cells to certain apoptotic stimuli is significantly reduced after differentiation. The results here reported indicate complex interactions between cytotoxic (drug therapy) and non-cytotoxic (differentiation) cancer treatments, which should be taken into account to improve therapeutic efficiency.  相似文献   

14.
海洋富含结构新颖的抗肿瘤活性物质,已成为全世界普遍关注的研究热点。国际已上市的海洋抗肿瘤药物有阿糖胞苷(Cytarabine)、曲贝替定(Ecteinascidin-743)、甲磺酸艾日布林(Eribulin mesylate)等,还有许多源自海洋生物的抗肿瘤候选药物正在进行临床前和临床研究。我国海洋抗肿瘤物质研究成果在国际上占有相当份额,但与产业化严重脱节。通过了解国内外海洋抗肿瘤药物的研究进展和产业方向,分析了我国海洋抗肿瘤药物产业化过程存在的药源开发不足、知识产权缺乏、资金投入不足、临床周期长等问题,提出了以市场需求,多学科相互交叉为基础,产学研合作模式为主体的自主知识产权药物研究体系,从关键技术、产品市场和产业政策等方面为加速我国海洋抗肿瘤药物的产业化提供有益思考。  相似文献   

15.
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials.Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.  相似文献   

16.
Brassinosteroids (BRs) are steroid plant hormones that are essential for many plant growth and developmental processes, including cell expansion, vascular differentiation and stress responses. Up to now the inhibitory effects of BRs on cell division of mammalian cells are unknown. To determine basic anticancer structure-activity relationships of natural BRs on human cells, several normal and cancer cell lines have been used. Several of the tested BRs were found to have high cytotoxic activity. Therefore, in our next series of experiments, we tested the effects of the most promising and readily available BR analogues with interesting anticancer properties, 28-homocastasterone (1) and 24-epibrassinolide (2), on the viability, proliferation, and cycling of hormone-sensitive/insensitive (MCF-7/MDA-MB-468) breast and (LNCaP/DU-145) prostate cancer cell lines to determine whether the discovered cytotoxic activity of BRs could be, at least partially, related to brassinosteroid-nuclear receptor interactions. Both BRs inhibited cell growth in a dose-dependent manner in the cancer cell lines. Flow cytometry analysis showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G(1) phase of the cell cycle and induced apoptosis in MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Our results provide the first evidence that natural BRs can inhibit the growth, at micromolar concentrations, of several human cancer cell lines without affecting the growth of normal cells. Therefore, these plant hormones are promising leads for potential anticancer drugs.  相似文献   

17.
Many currently available antifungal and antibacterial agents have undesirable toxic effects, and a wide spread use of these drugs has lead to rapid development of drug resistant strains which are the leading cause for treatment failure in both clinical and agricultural applications. The present article provides a synopsis of recent progress in investigations of new classes of antifungal compounds: disubstituted aliphatic and aromatic thioureas, triazole and thiazine compounds which act as ligands for transition metals. Antifungal effects of these compounds and selected metallic complexes versus representative plant pathogenic fungi are reviewed.  相似文献   

18.
Vegetable crops are grown worldwide as a source of nutrients and fiber in the human diet. Fungal plant pathogens can cause devastation in these crops under appropriate environmental conditions. Vegetable producers confronted with the challenges of managing fungal pathogens have the opportunity to use fungi and yeasts as biological control agents. Several commercially available products have shown significant disease reduction through various mechanisms to reduce pathogen development and disease. Production of hydrolytic enzymes and antibiotics, competition for plant nutrients and niche colonization, induction of plant host defense mechanisms, and interference with pathogenicity factors in the pathogen are the most important mechanisms. Biotechnological techniques are becoming increasingly valuable to elucidate the mechanisms of action of fungi and yeasts and provide genetic characterization and molecular markers to monitor the spread of these agents.  相似文献   

19.
Despite acquiring a strong understanding of the molecular basis and advances in treatment, cancer is the second major cause of death in the world. In clinics, the stagedependent treatment strategies may include surgery, radiotherapy and systemic treatments like hormonotherapy and chemotherapy, which are associated with side effects. The use of traditional herbal medicine in cancer patients is on a rise, as it is believed that these medications are non toxic and alleviate the symptoms of cancer, boost the immune system, or may tackle the cancer itself. Since antiquity the rhizome of Zingiber officinale Roscoe commonly known as ginger (family Zingiberaceae) have widely been used as a spice and condiment in different societies. Additionally, ginger also has a long history of medicinal use in various cultures for treating common colds, fever, to aid digestion, treat stomach upset, diarrhoea, nausea, rheumatic disorders, gastrointestinal complications and dizziness. Preclinical studies have also shown that ginger possesses chemopreventive and antineoplastic properties. It is also reported to be effective in ameliorating the side effects of γ-radiation and of doxorubicin and cisplatin; to inhibit the efflux of anticancer drugs by P-glycoprotein (P-gp) and to possess chemosensitizing effects in certain neoplastic cells in vitro and in vivo. The objective of this review is to address observations on the role of ginger as adjuvant to treatment modalities of cancer. Emphasis is also placed on the drawbacks and on future directions for research that will have a consequential effect on cancer treatment and cure.  相似文献   

20.
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means.Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号