首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-bound cation-transporting P-type Na,K-ATPase isolated from pig kidney membranes is much more resistant towards thermal inactivation than the almost identical membrane-bound Na,K-ATPase isolated from shark rectal gland membranes. The loss of enzymatic activity is correlated well with changes in protein structure as determined using synchrotron radiation circular dichroism (SRCD) spectroscopy. The enzymatic activity is lost at a 12°C higher temperature for pig enzyme than for shark enzyme, and the major changes in protein secondary structure also occur at T(m)'s that are ~10-15°C higher for the pig than for the shark enzyme. The temperature optimum for the rate of hydrolysis of ATP is about 42°C for shark and about 57°C for pig, both of which are close to the temperatures for onset of thermal unfolding. These results suggest that the active site region may be amongst the earliest parts of the structure to unfold. Detergent-solubilized Na,K-ATPases from the two sources show the similar differences in thermal stability as the membrane-bound species, but inactivation occurs at a lower temperature for both, and may reflect the stabilizing effect of a bilayer versus a micellar environment.  相似文献   

2.
The novel thermostable carboxylesterase EstGtA2 from G. thermodenitrificans (accession no. AEN92268) was functionally expressed and purified using an N-terminal fusion tag peptide. We recently reported general properties of the recombinant enzyme. Here we report preliminary data on thermal stability of EstGtA2 and of its tagged form. Conformational stability was investigated using circular dichroism and correlated with residual activity measurements using a colorimetric assay. The tag peptide had no considerable impact on the apparent melting temperature: T(m) value = 64.8°C (tagged) and 65.7°C (cleaved) at pH 8. After thermal unfolding, the tag-free enzyme rapidly recovered initial activity at 25°C (1.2 Umg(-1)), which was corroborated by substantial refolding (83%) as determined by far-UV CD transitions. However, after thermal unfolding, the purification tag drastically decreased specific activity at 25°C (0.07 Umg(-1)). This was corroborated by the absence of refolding transition. Although the purification tag has no undesirable impact on activity before thermal unfolding as well as on Tm, it drastically hinders EstGtA2 refolding resulting in a major loss of thermal stability.  相似文献   

3.
The mutation Arg91Gly (R91G) in β-tropomyosin (β-TM) is known to cause distal arthrogryposis, a severe congenital disorder of muscle tissues. The influence of this mutation in β-TM on its structure and thermal denaturation was demonstrated. It was shown by the differential scanning calorimetry and circular dichroism that this point mutation dramatically decreased the thermal stability of the significant part of the β-TM (about a half of the molecule). This part of the β-TM molecule carrying R91G mutation unfolds at ~28°C, i.e., at a much lower temperature than the other part of the molecule, which melts at ~40°C. The data of the differential scanning calorimetry were compared with the results of temperature dependence of pyrene eximer fluorescence, which decreased upon the dissociation of two β-TM chains in the region of pyrene-labeled Cys-36. This comparison allowed one to conclude that this thermal transition reflected the thermal unfolding of the whole N-terminal part of β-TM. Interestingly, the destabilizing effect of Arg91Gly mutation spread for a rather long distance along the tropomyosin coiled-coil indicating a high cooperativity of the thermal denaturation within this part of β-TM.  相似文献   

4.
Malm J  Jonsson M  Frohm B  Linse S 《The FEBS journal》2007,274(17):4503-4510
The zinc-binding protein semenogelin I is the major structural component of the gelatinous coagulum that is formed in freshly ejaculated semen. Semenogelin I is a rapidly evolving protein with a primary structure that consists of six repetitive units, each comprising approximately 60 amino acid residues. We studied the secondary and tertiary structure of semenogelin I by circular dichroism (CD) spectroscopy and Trp fluorescence emission spectroscopy. Fitting to the far-UV CD data indicated that the molecule comprises 5-10% alpha-helix and 20-30% beta-sheet formations. The far-UV spectrum of semenogelin I is clearly temperature dependent in the studied range 5-90 degrees C, and the signal at 222 nm increased with increasing temperature. The presence of Zn(2+) did not change the secondary structure revealed by the far-UV CD spectrum, whereas it did alter the near-UV CD spectrum, which implies that rearrangements occurred on the tertiary structure level. The conformational change induced in semenogelin I by the binding of Zn(2+) may contribute to the ability of this protein to form a gel.  相似文献   

5.
A new method has been developed for determining the stability parameters of proteins from their heat-induced transition curves followed by observation of changes in the far-UV circular dichroism (CD). This method of analysis of the thermal denaturation curve of a protein gave values of stability parameters that not only are identical to those measured by the differential scanning calorimetry (DSC), but also are measured with the same error as that observed with a calorimeter. This conclusion has been reached from our studies of the reversible heat-induced denaturation of lysozyme and ribonuclease A at various pH values. For each protein, the conventional method of analysis of the conformational transition curve, which assumes a linear temperature dependence of the pre- and posttransition baselines, gave the estimate of DeltaH(van)(m) (enthalpy change on denaturation at T(m), the midpoint of denaturation) which is significantly lower than DeltaH(cal)(m), the value obtained from DSC measurements. However, if the analysis of the same denaturation curve assumes that a parabolic function describes the temperature dependence of the pre- and posttransition baselines, there exists an excellent agreement between DeltaH(van)(m) and DeltaH(cal)(m) of the protein. The latter analysis is supported by the far-UV CD measurements of the oxidized ribonuclease A as a function of temperature, for the temperature dependence of this optical property of the protein is indeed nonlinear. Furthermore, it has been observed that, for each protein, the constant-pressure heat capacity change (DeltaC(p)) determined from the plots of DeltaH(van)(m) versus T(m) is independent of the method of analysis of the transition curve.  相似文献   

6.
The effects of osmolytes, including sucrose, sorbitol and proline on the remaining activity of firefly luciferase were measured. Heat inactivation studies showed that these osmolytes maintain the remaining activity of enzyme and increase activation energy of thermal unfolding reaction. Fluorescence and circular dichroism (CD) experiments showed changes in secondary and tertiary structure of firefly luciferase, in the presence of sucrose, sorbitol and proline. The unfolding curves of luciferase (obtained by far-UV CD spectra), indicated an irreversible thermal denaturation and raising of the midpoint of the unfolding transition temperature (T(m)) in the presence of osmolytes.  相似文献   

7.
Thermodynamic parameters describing the conformational stability of the histidine-containing phosphocarrier protein from Streptomyces coelicolor, scHPr, have been determined by steady-state fluorescence measurements of isothermal urea-denaturations, differential scanning calorimetry at different guanidinium hydrochloride concentrations and, independently, by far-UV circular dichroism measurements of isothermal urea-denaturations, and thermal denaturations at fixed urea concentrations. The equilibrium unfolding transitions are described adequately by the two-state model and they validate the linear free-energy extrapolation model, over the large temperature range explored, and the urea concentrations used. At moderate urea concentrations (from 2 to 3 m), scHPr undergoes both high- and low-temperature unfolding. The free-energy stability curves have been obtained for the whole temperature range and values of the thermodynamic parameters governing the heat- and cold-denaturation processes have been obtained. Cold-denaturation of the protein is the result of the combination of an unusually high heat capacity change (1.4 +/- 0.3 kcal.mol(-1).K(-1), at 0 m urea, being the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements) and a fairly low enthalpy change upon unfolding at the midpoint temperature of heat-denaturation (59 +/- 4 kcal.mol(-1), the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements). The changes in enthalpy (m(DeltaH(i) )), entropy (m(DeltaS(i) )) and heat capacity (m(DeltaC(pi) )), which occur upon preferential urea binding to the unfolded state vs. the folded state of the protein, have also been determined. The m(DeltaH(i) ) and the m(DeltaS(i) ) are negative at low temperatures, but as the temperature is increased, m(DeltaH(i) ) makes a less favourable contribution than m(DeltaS(i) ) to the change in free energy upon urea binding. The m(DeltaC(pi) ) is larger than those observed for other proteins; however, its contribution to the global heat capacity change upon unfolding is small.  相似文献   

8.
The freezing-point-depressing protein from the winter flounder, Pseudopleuronectes americanus has been shown from circular dichroism measurements to possess a large proportion (~85%) of the α-helical conformation in aqueous solution (pH 8.0) at ?1°C. The helical content decreases as the temperature is raised. Viscosity data at ?1°C indicate an asymmetric shape for the protein molecule compatible with its high helical content. Thus, the secondary and tertiary structure of this freezing-point-depressing protein as well as its primary structure (reported elsewhere), are found to be different from its counterpart glycoproteins isolated from the Antarctic fish.  相似文献   

9.
近几年来,圆二色光谱在蛋白质结构研究中的应用越来越广泛。通过对远紫外圆二色光谱的测量,可以推导出稀溶液中蛋白质的二级结构,进而分析和辨别蛋白质的三级结构类型;通过对近紫外圆二色光谱的测量和分析,可以推断蛋白质分子中芳香氨基酸残基和二硫键的微环境变化,研究介质与蛋白质结构间的关系;通过测定实验参数和环境条件变化时的圆二色光谱,可以研究蛋白质构像变化过程中的热力学和动力学特性。  相似文献   

10.
Chlorite dismutases (Cld) are unique heme b containing oxidoreductases that convert chlorite to chloride and dioxygen. Recent phylogenetic and structural analyses demonstrated that these metalloproteins significantly differ in oligomeric and subunit structure. Here we have analyzed two representatives of two phylogenetically separated lineages, namely pentameric Cld from Candidatus "Nitrospira defluvii" and dimeric Cld from Nitrobacter winogradskyi having a similar enzymatic activity at room temperature. By application of a broad set of techniques including differential scanning calorimetry, electronic circular dichroism, UV-vis and fluorescence spectroscopy the temperature-mediated and chemical unfolding of both recombinant proteins were analyzed. Significant differences in thermal and conformational stability are reported. The pentameric enzyme is very stable between pH 3 and 10 (T(m)=92°C at pH 7.0) and active at high temperatures thus being an interesting candidate for bioremediation of chlorite. By contrast the dimeric protein starts to unfold already at 53°C. The observed unfolding pathways are discussed with respect to the known subunit structure and subunit interaction.  相似文献   

11.
J Reed  V Kinzel 《Biochemistry》1984,23(7):1357-1362
The circular dichroism spectrum of the catalytic subunit of cAMP-dependent protein kinase was measured in the far-UV (190-240 nm) and near-UV (250-300 nm) region. Data from the far-UV spectra were processed with the CONTIN program for estimation of globular protein secondary structure [ Provencher , S. W. (1982) CONTIN (Version 2) User's Manual, European Molecular Biology Laboratory, Heidelberg, West Germany]. The composition of the protein determined by this method was 49 +/- 2% alpha-helix, 20 +/- 4% beta-sheet, and 31 +/- 3% remainder. This composition changes when the protein is allowed to bind Kemptide , a synthetic peptide substrate, with more than half of the disordered portion of the protein taking the form of beta-sheet. A certain portion of the alpha-helical structure also appears to move into a beta-sheet form. The near-UV CD spectrum of catalytic subunit shows changes in aromatic amino acid dichroism associated with substrate binding. These changes can be ascribed with a fair degree of certainty to alterations in the orientation of a tyrosine residue at the surface of the protein. These findings are discussed in terms of previous work on induced dichroism in this enzyme with regard to control mechanisms operating at the active site.  相似文献   

12.
Kostyukova AS  Choy A  Rapp BA 《Biochemistry》2006,45(39):12068-12075
Tropomodulin, a tropomyosin-binding protein, caps the slow-growing (pointed) end of the actin filament regulating its dynamics. Tropomodulin, therefore, is important for determining cell morphology, cell movement, and muscle contraction. For the first time we show that one tropomodulin molecule simultaneously binds two tropomyosin molecules in a cooperative manner. On the basis of the tropomodulin solution structure and predicted secondary structure, we introduced a series of point mutations in regions important for tropomyosin binding and actin capping. Capping activity of these mutants was assayed by measuring actin polymerization using pyrene fluorescence. Using direct methods (circular dichroism and native gel electrophoresis) for detecting tropomodulin/tropomyosin binding, we localized the second tropomyosin-binding site to residues 109-144. Despite previous reports that the second binding site is for erythrocyte tropomyosin only, we found that both short nonmuscle and long muscle alpha-tropomyosins bind there as well, though with different affinities. We propose a model for actin capping where one tropomodulin molecule can bind to two tropomyosin molecules at the pointed end.  相似文献   

13.
Unfolding domains of recombinant fusion alpha alpha-tropomyosin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The thermal unfolding of the coiled-coil alpha-helix of recombinant alpha alpha-tropomyosin from rat striated muscle containing an additional 80-residue peptide of influenza virus NS1 protein at the N-terminus (fusion-tropomyosin) was studied with circular dichroism and fluorescence techniques. Fusion-tropomyosin unfolded in four cooperative transitions: (1) a pretransition starting at 35 degrees C involving the middle of the molecule; (2) a major transition at 46 degrees C involving no more than 36% of the helix from the C-terminus; (3) a major transition at 56 degrees C involving about 46% of the helix from the N-terminus; and (4) a transition from the nonhelical fusion domain at about 70 degrees C. Rabbit skeletal muscle tropomyosin, which lacks the fusion peptide but has the same tropomyosin sequence, does not exhibit the 56 degrees C or 70 degrees C transition. The very stable fusion unfolding domain of fusion-tropomyosin, which appears in electron micrographs as a globular structural domain at one end of the tropomyosin rod, acts as a cross-link to stabilize the adjacent N-terminal domain. The least stable middle of the molecule, when unfolded, acts as a boundary to allow the independent unfolding of the C-terminal domain at 46 degrees C from the stabilized N-terminal unfolding domain at 56 degrees C. Thus, strong localized interchain interactions in coiled-coil molecules can increase the stability of neighboring domains.  相似文献   

14.
Horseradish peroxidase A1 thermal stability was studied by steady-state fluorescence, circular dichroism and differential scanning calorimetry at pH values of 4, 7 and 10. Changes in the intrinsic protein probes, tryptophan fluorescence, secondary structure, and heme group environment are not coincident. The T(m) values measured from the visible CD data are higher than those measured from Trp fluorescence and far-UV CD data at all pH values showing that the heme cavity is the last structural region to suffer significant conformational changes during thermal denaturation. However ejection of the heme group leads to an irreversible unfolding behavior at pH 4, while at pH 7 and 10 refolding is still observed. This is putatively correlated with the titration state of the heme pocket. Thermal transitions of HRPA1 showed scan rate dependence at the three pH values, showing that the denaturation process was kinetically controlled. The denaturation process was interpreted in terms of the classic scheme, N<-->U-->D and fitted to far-UV CD ellipticity. A good agreement was obtained between the experimental and theoretical T(m) values and percentages of irreversibility. However the equilibrium between N and U is probably more complex than just a two-state process as revealed by the multiple T(m) values.  相似文献   

15.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   

16.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

17.
Activation of the pro-apoptotic protein Bax under intracellular oxidative stress is closely related to its association with the mitochondrial outer membrane (MOM) system, ultimately resulting in cell death. The precise mechanism by which this activation and the subsequent structural changes in the protein occur is currently unknown. In addition to triggering the onset of apoptosis, oxidative stress generates oxidized lipids whose impact on mitochondrial membrane integrity and the activity of membrane-associated Bax is unclear. We therefore devised a model system that mimics oxidative stress conditions by incorporating oxidized phospholipids (OxPls) into mitochondria-like liposomes, and studied the OxPls' impact on Bax-membrane interactions. Differential scanning calorimetry (DSC) was used to study membrane organization and protein stability, while conformational changes in the protein upon contact with lipid vesicles were monitored using far-UV circular dichroism (CD) spectroscopy. The thermograms for liposomes containing the OxPl 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) differed dramatically from those for unmodified liposomes. Moreover, Bax exhibited enhanced thermal stability in the presence of the modified liposomes, indicating that it interacted strongly with PazePC-containing membranes. The presence of PazePC also increased the α-helical character of Bax compared to the protein alone or with PazePC-free vesicles, at 10°C, 20°C, and 37°C. Presumably, the presence of PazePC-like OxPls a) increases the population of membrane-associated Bax and b) facilitates the protein's insertion into the membrane by distorting the bilayer's organization, as seen by solid-state high-resolution (1)H and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy.  相似文献   

18.
Tropomyosin was found to undergo only limited digestion by trypsin at 0 degrees C and the two segments that accumulated amounted to two-thirds of the original protein. They are referred to as segments A and B. These segments were not resistant to trypsin digestion at 20 degrees C and at the latter temperature no large fragments remained as judged by disc gel electrophoresis. Segments A and B were separated from each other on the basis of solubility differences and were found to have molecular weights of 24600 and 21900 respectively. Each of the segments appeared to retain about 70-75% of the helical conformation as judged by circular dichroism at 20 degrees C. However, the segments did not show any of the inhibitory activity of the parent tropomyosin molecule when mixed with troponin in the Mg2+-actomyosin ATPase system. Amino acid analysis showed that the portion of tropomyosin that was digested by trypsin (EC 3.4.21.4) had a lower content of the helix stabilizing residues Glu and Leu and a higher content of the helix-destabilizing residues Arg and Lys. These differences indicate that the digested portion should be less stable in the helical conformation than the two trypsin-resistant segments. End group determinations along with the results of the amino acid analysis indicated that segment A was probably derived from the central one-third of tropomyosin and segment B from the C-terminal one-third. By the process of elimination the N-terminal third appears to have been more liable region that was digested by trypsin. The segments A and B were shown to differ in their stability to denaturation by guanidine-HCl and elevated temperature. All of these observations indicate that tropomyosin is not a uniform structure and is composed of regions of different stability.  相似文献   

19.
Protein self-association and protein unfolding are two temperature-dependent processes whose understanding is of utmost importance for the development of biological pharmaceuticals because protein association may stabilize or destabilize protein structure and function. Here we present new theoretical and experimental methods for analyzing the thermodynamics of self-association and unfolding. We used isothermal dilution calorimetry and analytical ultracentrifugation to measure protein self-association and introduced binding partition functions to analyze the cooperative association equilibria. In a second type of experiment, we monitored thermal protein unfolding with differential scanning calorimetry and circular dichroism spectroscopy and used the Zimm?Bragg theory to analyze the unfolding process. For α-helical proteins, the cooperative Zimm?Bragg theory appears to be a powerful alternative to the classical two-state model. As a model protein, we chose highly purified human recombinant apolipoprotein A-I. Self-association of Apo A-I showed a maximum at 21 °C with an association constant Ka of 5.6 × 10(5) M(?1), a cooperativity parameter σ of 0.003, and a maximal association number n of 8. The association enthalpy was linearly dependent on temperature and changed from endothermic at low temperatures to exothermic above 21 °C with a molar heat capacity ΔC(p)° of ?2.76 kJ mol(?1) K(?1). Above 45 °C, the association could no longer be measured because of the onset of unfolding. Unfolding occurred between 45 and 65 °C and was reversible and independent of protein concentration up to 160 μM. The midpoint of unfolding (T(0)) as measured by DSC was 52?53 °C; the enthalpy of unfolding (ΔH(N)(U)) was 420 kJ/mol. The molar heat capacity (Δ(N)(U)C(p)) increased by 5.0 ± 0.5 kJ mol(?1) K(?1) upon unfolding corresponding to a loss of 80?85 helical segments, which was confirmed by circular dichroism spectroscopy. Unfolding was highly cooperative with a nucleation parameter σ of 4.4 × 10(?5).  相似文献   

20.
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号