首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrating the proton circuit into photosynthesis: progress and challenges   总被引:7,自引:0,他引:7  
The formation of trans-thylakoid proton motive force (pmf) is coupled to light-driven electron transfer and both powers the synthesis of ATP and acts as a signal for initiating antenna regulation. This key intermediate has been difficult to study because of its ephemeral and variable qualities. This review covers recent efforts to probe pmf in vivo as well as efforts to address one of the key questions in photosynthesis: How does the photosynthetic machinery achieve sufficient flexibility to meet the energetic and regulatory needs of the plant in a varying environment? It is concluded that pmf plays a central role in these flexibility mechanisms.  相似文献   

2.
Mitochondria are central to cellular metabolism and energy conversion. In plants they also enable photosynthesis through additional components and functional flexibility. A majority of those processes relies on the assembly of individual proteins to larger protein complexes, some of which operate as large molecular machines. There has been a strong interest in the makeup and function of mitochondrial protein complexes and protein–protein interactions in plants, but the experimental approaches used typically suffer from selectivity or bias. Here, we present a complexome profiling analysis for leaf mitochondria of the model plant Arabidopsis thaliana for the systematic characterization of protein assemblies. Purified organelle extracts were separated by 1D Blue native (BN) PAGE, a resulting gel lane was dissected into 70 slices (complexome fractions) and proteins in each slice were identified by label free quantitative shot‐gun proteomics. Overall, 1359 unique proteins were identified, which were, on average, present in 17 complexome fractions each. Quantitative profiles of proteins along the BN gel lane were aligned by similarity, allowing us to visualize protein assemblies. The data allow re‐annotating the subunit compositions of OXPHOS complexes, identifying assembly intermediates of OXPHOS complexes and assemblies of alternative respiratory oxidoreductases. Several protein complexes were discovered that have not yet been reported in plants, such as a 530 kDa Tat complex, 460 and 1000 kDa SAM complexes, a calcium ion uniporter complex (150 kDa) and several PPR protein complexes. We have set up a tailored online resource ( https://complexomemap.de/at_mito_leaves ) to deposit the data and to allow straightforward access and custom data analyses.  相似文献   

3.
In addition to linear electron transport from water to NADP+, alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport‐dependent PQ reduction and PTOX‐dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2‐2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2‐2 pgr5 double mutant. This was accompanied by partial suppression of stromal over‐reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.  相似文献   

4.
原绿球藻(Prochlorococcus)作为海洋丰度最高的浮游植物,对海洋生态系统的物质循环和能量流动起着重要的驱动作用。原绿球藻生长和光合作用活性容易受到环境胁迫的影响,进而影响整个海洋生态系统的稳定性。因此,研究原绿球藻应对环境胁迫的响应机制具有重要的生态意义。原绿球藻主要通过分化出不同的生态型来适应不同光照和营养盐的海洋环境,但仍然会很难快速适应各种突如其来的海洋环境变化。本文从原绿球藻应对环境胁迫的角度,探讨了其生理和分子响应机制的最新研究进展,包括光系统I循环电子传递在光照变化时发挥的重要作用,通过RNA快速响应而调控基因表达应对环境胁迫,以及在辅助异养细菌的保护下应对活性氧的胁迫等。本文也展望了原绿球藻对环境胁迫响应的生理和分子机制的未来研究方向,旨在为原绿球藻抗逆机制的深入研究提供参考。  相似文献   

5.
The rates of electron transfer in the presence of natural cofactors, ferredoxin and NADP, which were added in the amounts catalyzing noncyclic or cyclic electron transfer, were studied in thylakoids isolated from 17-day-old wheat seedlings. Upon excitation of both photosystems (PS) of photosynthesis, the potential rate of NADP reduction in thylakoids isolated from plants grown on nitrogen-free nutrient solution did not differ from that in thylakoids from the control plants. However, the P/2e ratio was significantly lower in thylakoids isolated from nitrogen-deficient plants. On the contrary, in the presence of DCMU, the rate of PSI-driven electron transfer from an artificial donor to NADP was considerably higher in these than in the control thylakoids. In the presence of ferredoxin under anaerobic conditions, the rate of phosphorylation coupled to cyclic electron transport was also significantly higher in thylakoids isolated from nitrogen-deficient plants, than in thylakoids isolated from control plants. Our data show that PSI-driven electron transport and cyclic photophosphorylation are activated in nitrogen-starved wheat plants, at least at the initial stages of starvation.  相似文献   

6.
The functioning of alternative routes of photosynthetic electron transport was analyzed from the kinetics of dark reduction of P700+ , an oxidized primary donor of PSI, in barley (Hordeum vulgare L.) leaves irradiated by white light of various intensities. Redox changes of P700 were monitored as absorbance changes at 830 nm using PAM 101 specialized device. Irradiation of dark-adapted leaves caused a gradual P700+ accumulation, and the steady-state level of oxidized P700 increased with intensity of actinic light. The kinetics of P700+ dark reduction after a pulse of strong actinic light, assayed from the absorbance changes at 830 nm, was fitted by a single exponential term with a halftime of 10–12 ms. Two slower components were observed in the kinetics of P700+ dark reduction after leaf irradiation by attenuated actinic light. The contribution of slow components to P700+ reduction increased with the decrease in actinic light intensity. Two slow components characterized by halftimes similar to those observed after leaf irradiation by weak white light were found in the kinetics of dark reduction of P700+ oxidized in leaves with far-red light specifically absorbed by PSI. The treatment of leaves with methyl viologen, an artificial PSI electron acceptor, significantly accelerated the accumulation of P700+ under light. At the same time, the presence of methyl viologen, which inhibits ferredoxin-dependent electron transport around PSI, did not affect three components of the kinetics of P700+ dark reduction obtained after irradiations with various actinic light intensities. It was concluded that some part of PSI reaction centers was not reduced by electron transfer from PSII under weak or moderate intensities of actinic light. In this population of PSI centers, P700+ was reduced via alternative electron transport routes. Insensitivity of the kinetics of P700+ dark reduction to methyl viologen evidences that the input of electrons to PSI from the reductants (NADPH or NADH) localized in the chloroplast stroma was effective under those light conditions.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 5–11.Original Russian Text Copyright © 2005 by Bukhov, Egorova.  相似文献   

7.
The light-dependent production of ATP and reductants by the photosynthetic apparatus in vivo involves a series of electron and proton transfers. Consideration is given as to how electron fluxes through photosystem I (PSI), using absorption spectroscopy, and through photosystem II (PSII), using chlorophyll fluorescence analyses, can be estimated in vivo. Measurements of light-induced electrochromic shifts using absorption spectroscopy provide a means of analyzing the proton fluxes across the thylakoid membranes in vivo. Regulation of these electron and proton fluxes is required for the thylakoids to meet the fluctuating metabolic demands of the cell. Chloroplasts exhibit a wide and flexible range of mechanisms to regulate electron and proton fluxes that enable chloroplasts to match light use for ATP and reductant production with the prevailing metabolic requirements. Non-invasive probing of electron fluxes through PSI and PSII, and proton fluxes across the thylakoid membranes can provide insights into the operation of such regulatory processes in vivo.  相似文献   

8.
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.  相似文献   

9.
Cyclic electron flow around photosystem I (CEF1) is thought to augment chloroplast ATP production to meet metabolic needs. Very little is known about the induction and regulation of CEF1. We investigated the effects on CEF1 of antisense suppression of the Calvin–Benson enzymes glyceraldehyde‐3‐phosphate dehydrogenase (gapR), and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) small subunit (SSU), in tobacco (Nicotiana tabacum cv. Wisconsin 38). The gapR, but not ssuR, mutants showed substantial increases in CEF1, demonstrating that specific intermediates, rather than slowing of assimilation, induce CEF1. Both types of mutant showed increases in steady‐state transthylakoid proton motive force (pmf) and subsequent activation of the photoprotective qE response. With gapR, the increased pmf was caused both by up‐regulation of CEF1 and down‐regulation of the ATP synthase. In ssuR, the increased pmf was attributed entirely to a decrease in ATP synthase activity, as previously seen in wild‐type plants when CO2 levels were decreased. Comparison of major stromal metabolites in gapR, ssuR and hcef1, a mutant with decreased fructose 1,6‐bisphosphatase activity, showed that neither the ATP/ADP ratio, nor major Calvin–Benson cycle intermediates can directly account for the activation of CEF1, suggesting that chloroplast redox status or reactive oxygen species regulate CEF1.  相似文献   

10.
Photoinhibition of photosynthesis was studied in Vitis berlandieri and Vitis rupestris leaves under controlled conditions (irradiation of detached leaves to about 1900 micromol m(-2) s(-1)). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of PS2, Fv/Fm declined, Fo increased significantly in leaves of V. berlandieri, while Fo decreased in V. rupestris. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in high light irradiated more in leaves of V. berlandieri than in leaves of V. rupestris. A smaller inhibition of PS1 activity was also observed in both leaves. In the subsequent dark incubation, fast recovery was observed in both leaves and reached maximum PS2 efficiencies similar to those observed in non-photoinhibited leaves. The artificial exogenous electron donors DPC, NH2OH and Mn2+ failed to restore the high light induced loss of PS2 activity in V. berlandieri leaves, while DPC and NH2OH significantly restored in V. rupestris leaves. It is concluded that high light inactivates on the donor side of PS2 and acceptor side of PS2 in V. rupestris and V. berlandieri leaves, respectively. Quantification of the PS2 reaction center protein D1 and 33 kDa protein of water splitting complex following high light exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity in high light irradiated leaves was due to the marked loss of D1 protein and 33 kDa protein in V. berlandieri and V. rupestris leaves, respectively.  相似文献   

11.
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.  相似文献   

12.
Cyanobacteria possess multiple,functionally distinct NADPH dehydrogenase (NDH-1) complexes.In this mini-review,we describe the cyanobacterial NDH-1 complexes by focusing on their identification,regulatory properties,and multiple functions.The multiple functions can be divided into basic and extending functions,and the basic functions are compared with those in chloroplasts.Many questions related to cyanobacterial NDH-1 complexes remain unanswered and are briefly summarized here.  相似文献   

13.
PGR5 has been reported as an important factor for the activity of the ferredoxin-dependent cyclic electron transport around PSI. To elucidate the role of PGR5 in C(3) photosynthesis, we characterized the photosynthetic electron transport rate (ETR), CO(2) assimilation and growth in the Arabidopsis thaliana pgr5 mutant at various irradiances and with CO(2) regimes. In low-light-grown pgr5, the CO(2) assimilation rate and ETR were similar to the those of the wild type at low irradiance, but decreased at saturating irradiance under photorespiratory conditions as well as non-photorespiratory conditions. Although non-photochemical quenching of chlorophyll fluorescence (NPQ) was not induced in the pgr5 mutant under steady-state photosynthesis, we show that it was induced under dark to light transition at low CO(2) concentration. Under low light conditions in air, pgr5 showed the same growth as the wild type, but a significant growth reduction compared with the wild type at >150 mumol photons m(-2) s(-1). This growth impairment was largely suppressed under high CO(2) concentrations. Based on the intercellular CO(2) concentration dependency of CO(2) assimilation, ETR and P700 oxidation measurements, we conclude that reduction of photosynthesis and growth result from (i) ATP deficiency and (ii) inactivation of PSI. We discuss these data in relation to the role of PGR5-dependent regulatory mechanisms in tuning the ATP/NADPH ratio and preventing inactivation of PSI, especially under conditions of high irradiance or enhanced photorespiration.  相似文献   

14.
Cyanobacteria possess multiple, functionally distinct NADPH dehydrogenase (NDH-1) complexes. In this mini-review, we describe the cyanobacterial NDH-1 complexes by focusing on their identification, regulatory properties, and multiple functions. The multiple functions can be divided into basic and extending functions, and the basic functions are compared with those in chloroplasts. Many questions related to cyanobacterial NDH-1 complexes remain unanswered and are briefly summarized here.  相似文献   

15.
This review analyzes various alternative pathways of chloroplast electron transport mediated by photoreactions of photosystem I (PSI) and unrelated to activity of photosystem II (PSII). The mechanisms and functional significance of the alternative pathways are considered. These pathways are complexly organized and comprise ferredoxin-dependent electron recycling around PSI, as well as electron donation to noncyclic chain in the region between PSII and PSI from reduced substances localized in the chloroplast stroma. For each of the alternative pathways, the origin of corresponding enzymes and their compartmentalization in the complex membrane system of the chloroplast are discussed. It is shown that operation of alternative electron transport pathways contributes to energy transduction and cell defense function, facilitates the absorption of inorganic carbon, and is significant for chloroplast respiration. Multiple mechanisms for regulation of alternative pathways have been revealed. It is concluded that PSI-related alternative electron transport pathways constitute an integral part of entire system of photosynthetic electron transport, this system being principally responsible for energy supply of phototrophic cells and whole plants.  相似文献   

16.
Further developing the method for direct multiparticle modeling of electron transport in the thylakoid membrane, here we examine the influence of the shape of the reaction volume on the kinetics of the interaction of the mobile carrier with the membrane complex. Applied to cyclic electron transport around photosystem I, with account of the distribution of complexes in the membrane and restricted diffusion of the reactants, the model demonstrates that the biphasic character of the dark reduction of P700+ is quite naturally explained by the spatial heterogeneity of the system.  相似文献   

17.
Flash photolysis experiments with electron paramagnetic resonance detection were carried out between 10 K and 300 K on samples of green plant and algal species. Chemically induced dynamic electron polarization was evident for the signals observed in the g = 2.0 region for 100 KHz modulated detection and also for a system with no magnetic field modulation. The light reversible signals decaying in about 1 ms at low temperatures are interpreted as arising from photosystem I of the green plant and algal samples. Evidence is presented which indicates that the origin of the electron spin polarization is the well established radical-pair mechanism.  相似文献   

18.
Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T‐DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co‐expressed with a number of genes encoding mitochondrial proteins, including SDH1‐1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin‐adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein‐bound flavin‐adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro‐respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth.  相似文献   

19.
The effects of different photooxidative stresses on the function of photosystem I were measured in vivo in Chlamydomonas reinhardtii. Pholooxidative stresses included strong light, light combined with chilling to 0 °C, and light combined with several concentrations of methyl viologen. Photosystem I function was measured in vivo using the absorbance change at 820 nm associated with P700 oxidation. Photosystem II function was measured in vivo using chlorophyll fluorescence. Strong light or light combined with chilling caused inhibition of photosystem II function earlier than inhibition of photosystem I function. When photosystem I was inhibited, however, it did not recover. Light combined with 5 mmol m?3 methyl viologen caused inhibition of photosystem I function earlier than inhibition of photosystem II. If the methyl viologen concentration was reduced to 1 mmol m?3, the damage to PSI was accelerated by addition of 90 mmol m?3 chloramphenicol. This effect of chloroamphenicol suggests a role for chloroplast-encoded proteins in protecting photosystem I against photooxidative damage caused by methyl viologen.  相似文献   

20.
Chlorophyll fluorescence, light scattering, the electrochromic shift P515 and levels of some photosynthetic intermediates were measured in illuminated leaves. Oxygen and CO2 concentrations in the gas phase were varied in order to obtain information on control of Photosystem II activity under conditions such as produced by water stress, when stomatal closure restricts access of CO2 to the photosynthetic apparatus. Light scattering and energy-dependent fluorescence quenching indicated a high level of chloroplast energization under high intensity illumination even when linear electron transport was curtailed in CO2-free air or in 1% oxygen with 35 ll-1 CO2. Calculations of the phosphorylation potential based on measurements of phosphoglycerate, dihydroxyacetone phosphate and NADP revealed ratios of intrathylakoid to extrathylakoid proton concentrations, which were only somewhat higher in air containing 35 l l-1 CO2 than in CO2-free air or 1% oxygen/35 l l-1 CO2. Anaerobic conditions prevented appreciable chloroplast energization. Acceptor-limitation of electron flow resulted in a high reduction level of the electron transport chain, which is characterized by decreased oxidation of P700, not only under anaerobic conditions, but also in air, when CO2 was absent, and in 1% oxygen, when the CO2 concentration was reduced to 35 ll-1. Efficient control of electron transport was indicated by the photoaccumulation of P700 + at or close to the CO2 compensation point in air. It is proposed to require the interplay between photorespiratory and photosynthetic electron flows, electron flow to oxygen and cyclic electron flow. The field-indicating electrochromic shift (P515) measured as a rapid absorption decrease on switching the light off followed closely the extent of photoaccumulation of P700 + in the light.Abbreviations F, F0, F0, FM, FM chlorophyll fluorescence levels - GA glyceraldehyde - P515 field indicating rapid absorption change peaking at 522 nm - QA primary quinone acceptor in Photosystem II - QN non-photochemical quenching of chlorophyll fluorescence - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号