首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A steady model for the evaluation of external liquid film diffusion and internal pore diffusion effects in an immobilized biofilm system under continuous mode of operation was developed. The model takes into account, substrate diffusion through external liquid film and biofilm. Average rate of substrate consumption in the biofilm was considered. The overall efficiency of the biofilm was mathematically represented by considering the combined effects of substrate penetration and substrate utilization in the biofilm. The model was illustrated using a case study of pyridine biodegradation in a rotating biological contactor immobilized with pyridine degrading microbial film. The model is able to effectively predict both internal and external mass transfer effects in an immobilized biofilm system.  相似文献   

2.
This modeling study evaluates the influence of biofilm geometrical characteristics on substrate mass transfer and conversion rates. A spatially two-dimensional model was used to compute laminar fluid flow, substrate mass transport, and conversion in irregularly shaped biofilms. The flow velocity above the biofilm surface was varied over 3 orders of magnitude. Numerical results show that increased biofilm roughness does not necessarily lead to an enhancement of either conversion rates or external mass transfer. The average mass transfer coefficient and Sherwood numbers were found to decrease almost linearly with biofilm area enlargement in the flow regime tested. The influence of flow, biofilm geometry and biofilm activity on external mass transfer could be quantified by Sh-Re correlations. The effect of biofilm surface roughness was incorporated in this correlation via area enlargement. Conversion rates could be best correlated to biofilm compactness. The more compact the biofilm, the higher the global conversion rate of substrate. Although an increase of bulk fluid velocity showed a large effect on mass transfer coefficients, the global substrate conversion rate per carrier area was less affected. If only diffusion occurs in pores and channels, then rough biofilms behave as if they were compact but having less biomass activity. In spite of the fact that the real biofilm area is increased due to roughness, the effective mass transfer area is actually decreased because only biofilm peaks receive substrate. This can be explained by the fact that in the absence of normal convection in the biofilm valleys, the substrate gradients are still largely perpendicular to the carrier. Even in the cases where convective transport dominates the external mass transfer process, roughness could lead to decreased conversion rates. The results of this study clearly indicate that only evaluation of overall conversion rates or mass fluxes can describe the correct biofilm conversion, whereas interpretation of local concentration or flow measurements as such might easily lead to erroneous conclusions.  相似文献   

3.
A two-dimensional model for quantitative evaluation of the effect of convective and diffusive substrate transport on biofilm heterogeneity was developed. The model includes flow computation around the irregular biofilm surface, substrate mass transfer by convection and diffusion, biomass growth, and biomass spreading. It was found that in the absence of detachment, biofilm heterogeneity is mainly determined by internal mass transfer rate of substrates and by the initial percentage of carrier-surface colonization. Model predictions show that biofilm structures with highly irregular surface develop in the mass transfer-limited regime. As the nutrient availability increases, there is a gradual shift toward compact and smooth biofilms. A smaller fraction of colonized carrier surface leads to a patchy biofilm. Biofilm surface irregularity and deep vertical channels are, in this case, caused by the inability of the colonies to spread over the whole substratum surface. The maximum substrate flux to the biofilm was greatly influenced by both internal and external mass transfer rates, but not affected by the inoculation density. In general, results of the present model were similar to those obtained by a simple diffusion-reaction-growth model.  相似文献   

4.
Measurement of local mass transfer coefficient in biofilms   总被引:2,自引:0,他引:2  
Local mass transfer rates for an electrochemically formed microsink in an aerobic biofilm was measured by a mobile microelectrode using limiting current technique. Mass transfer coefficients varied both horizontally and vertically in the biofilm. The results implied the existence of an irregular biofilm structure consisting of microbial cell clusters surrounded by tortuous water channels. An unexpected increase of the local mass transfer coefficient just above the biofilm surface suggested the existence, of local flow instability in this region. As expected, the influence of bulk flow velocity on the local mass transfer rate decreased with increasing depth into the biofilm. Mass transfer coefficients fluctuated significantly inside microbial cell clusters, suggesting the existence of internal channels through which liquid could flow. A new conceptual model of biofilm microbial cluster structure is proposed to account for such biofilm microstructure irregularities. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
A steady-state model for quantifying the space competition in multispecies biofilms is developed. The model includes multiple active species, inert biomass, substrate utilization and diffusion within the biofilm, external mass transport, and detachment phenomena. It predicts the steady-state values of biofilm thickness, species distribution, and substrate fluxes. An experimental evaluation is carried out in completely mixed biofilm reactors in which slow-growing nitrifying bacteria compete with acetate-utilizing heterotrophs. The experimental results show that the model successfully describes the space competition. In particular, increasing acetate concentrations causes NH(4) (+)-N fluxes to decrease, because nitrifiers are forced deeper into the biofilm, where they experience greater mass-transport resistance.  相似文献   

6.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquid films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick. The TCE diffusion coefficients in the GJ10 biofilms were apparently constant at about the water value. The change in the diffusion coefficient for the JS150 biofilms is attributed to the influence of eddy diffusion and convective flow on transport in the thinner (<1-mm thick) biofilms.  相似文献   

7.
Conduction-based modeling of the biofilm anode of a microbial fuel cell   总被引:1,自引:0,他引:1  
The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.  相似文献   

8.
9.
A multispecies biofilm model   总被引:9,自引:0,他引:9  
Using a continuum approach and observing conservation principles, an analytical mathematical model of microbial interaction in biofilms was developed. The model predicts changes in biofilm thickness and describes the dynamics and spatial distribution of microbial species and substrates in the film. It allows for biomass detachment due to shear stress and sloughing, external mass transfer limitations, as well as variations in substrate concentrations in the bulk liquid. A computer implementation of the model is provided using an example of heterotrophicautotrophic competition to illustrate how the observed phenomena can be numerically reproduced and indicating how they might affect overall biofilm performance.  相似文献   

10.
Modeling biocide action against biofilms   总被引:1,自引:0,他引:1  
A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm that lacks much of the hyphal mass found in the hwp1/HWP1 reconstituted strain. In a biofilm cell retention assay, we find that the hwp1/hwp1 mutant is defective in retention of nonadherent bcr1/bcr1 mutant cells. In an in vivo rat venous catheter model, the hwp1/hwp1 mutant has a severe biofilm defect, yielding only yeast microcolonies in the catheter lumen. These properties of the hwp1/hwp1 mutant are consistent with its role as a hypha-specific adhesin and indicate that it is required for normal biofilm formation. Overexpression of HWP1 in a bcr1/bcr1 mutant background improves adherence in the in vivo catheter model. This finding provides additional support for the model that Hwp1 is critical for biofilm adhesion. Hwp1 is the first cell surface protein known to be required for C. albicans biofilm formation in vivo and is thus an excellent therapeutic target.  相似文献   

12.
Quantification of biofilm accumulation by an optical approach   总被引:2,自引:0,他引:2  
Methods for non-invasive, in situ, measurements of biofilm optical density and biofilm optical thickness were evaluated based on Pseudomonas aeruginosa experiments. Biofilm optical density, measured as intensity reduction of a light beam transmitted through the biofilm, correlates with biofilm mass, measured as total carbon and as cell mass. The method is more sensitive and less labor intensive than other commonly used methods for determining extent of biofilm mass accumulation. Biofilm optical thickness, measured by light microscopy, is translated into physical thickness based on biofilm refraction measurements. Biofilm refractive index was found to be close to the refractive index of water. The P. aeruginosa biofilms studied reached a pseudo steady state in less than a week, with stable liquid phase substrate, cell and TOC concentrations and average biofilm thickness. True steady state was, however, not reached as both biofilm density and roughness were still increasing after 3 weeks.  相似文献   

13.
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass.  相似文献   

14.
Simulation of citric acid production by rotating disk contactor   总被引:1,自引:0,他引:1  
A simple model was presented to describe the time courses of citric acid production by a rotating disc contactor (RDC) using Aspergillus niger. The model is expressed by Monod-type cell growth, Luedeking-Piret-type citric acid production rate equations, and the diffusion equation for oxygen in the biofilm. The model contains five parameters which were determined by the nonlinear least squares method by fitting the numerical solution to the experimental data. In solving the equations, the cell density of the biofilm was estimated from the value of cellular mass per unit of biofilm area using an empirical equation. The experimental time courses in citric acid production period were well simulated with this model. The relation between the specific biofilm surface area and the rate of citric acid production was also explained by the simulation using the average values of five parameters of twelve runs. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 689-696, 1997.  相似文献   

15.
Effects of biofilm structures on oxygen distribution and mass transport   总被引:23,自引:0,他引:23  
Aerobic biofilms were found to have a complex structure consisting of microbial cell clusters (discrete aggregates of densely packed cells) and interstitial voids. The oxygen distribution was strongly correlated with these strutures. The voids facilitated oxygen transport from the bulk liquid through the biofilm, supplying approximately 50% of the total oxygen consumed by the cells. The mass transport rate from the bulk liquid is influenced by the biofilm structure; the observed exchange surface of the biofilm is twice that calculated for a simple planar geometry. The oxygen diffusion occurred in the direction normal to the cluster surfaces, the horizontal and vertical components of the oxygen gradients were of equal importance. Consequently, for calculations of mass transfer rates a three-dimensional model is necessary. These findings imply that to accurately describe biofilm activity, the relation between the arrangement of structural components and mass transfer must be undrstood. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.  相似文献   

17.
The aim of this work was to investigate the effects of exposure to extremely low-frequency electromagnetic fields (ELF-EMF) both on biofilm formation and on mature biofilm of Helicobacter pylori. Bacterial cultures and 2-day-old biofilm of H. pylori ATCC 43629 were exposed to ELF-EMF (50 Hz frequency–1 mT intensity) for 2 days to assess their effect on the cell adhesion and on the mature biofilm detachment, respectively. All the exposed cultures and the respective sham exposed controls were studied for: the cell viability status, the cell morphological analysis, the biofilm mass measurement, the genotypic profile, and the luxS and amiA gene expression. The ELF-EMF acted on the bacterial population during the biofilm formation displaying significant differences in cell viability, as well as, in morphotypes measured by the prevalence of spiral forms (58.41%) in respect to the controls (33.14%), whereas, on mature biofilm, no significant differences were found when compared to the controls. The measurement of biofilm cell mass was significantly reduced in exposed cultures in both examined experimental conditions. No changes in DNA patterns were recorded, whereas a modulation in amiA gene expression was detected. An exposure to ELF-EMF of H. pylori biofilm induces phenotypic changes on adhering bacteria and decreases the cell adhesion unbalancing the bacterial population therefore reducing the H. pylori capability to protect itself.  相似文献   

18.
We present a spatial model describing the growth of a photosynthetic microalgae biofilm. In this 2D-model we consider photosynthesis, cell carbon accumulation, extracellular matrix excretion, and mortality. The rate of each of these mechanisms is given by kinetic laws regulated by light, nitrate, oxygen and inorganic carbon. The model is based on mixture theory and the behaviour of each component is defined on one hand by mass conservation, which takes into account biological features of the system, and on the other hand by conservation of momentum, which expresses the physical properties of the components. The model simulates the biofilm structural dynamics following an initial colonization phase. It shows that a 75 μm thick active region drives the biofilm development. We then determine the optimal harvesting period and biofilm height which maximize productivity. Finally, different harvesting patterns are tested and their effect on biofilm structure are discussed. The optimal strategy differs whether the objective is to recover the total biofilm or just the algal biomass.  相似文献   

19.
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号