首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Phenotypic modulation, migration and proliferation of vascular smooth muscle cells (SMCs) are major events in restenosis after percutaneous transluminal angioplasty. Surface cell adhesion molecules, essential to morphogenesis and maintenance of adult tissue architecture, are likely to be involved, but little is known about cell adhesion molecules expressed on SMCs. T-cadherin is a glycosyl phosphatidylinositol-anchored member of the cadherin superfamily of adhesion molecules. Although highly expressed in vascular and cardiac tissues, its function in these tissues is unknown. We previously reported increased expression of T-cadherin in intimal SMCs in atherosclerotic lesions and proposed a role for T-cadherin in phenotype control. Here we performed immunohistochemical analysis of spatial and temporal changes in vascular T-cadherin expression following balloon catheterisation of the rat carotid artery. T-cadherin expression in SMCs markedly increases in the media early (1-4 days) after injury, and later (day 7-28) in forming neointima, especially in its preluminal area. Staining for monocyte/macrophage antigen ED-1, proliferating cell nuclear antigen and smooth muscle alpha-actin revealed that spatial and temporal changes in T-cadherin level coincided with the peak in cell migration and proliferation activity during neointima formation. In colchicine-treated cultures of rat aortic SMCs T-cadherin expression is increased in dividing M-phase cells but decreased in non-dividing cells. Together the data support an association between T-cadherin expression and SMC phenotype.  相似文献   

3.
4.
Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory peptide that can inhibit or promote the proliferation of cultured vascular smooth muscle cells (SMCs), depending on cell density (Majack, R. A. 1987. J. Cell Biol. 105:465-471). In this study, we have examined the mechanisms underlying the growth-promoting effects of TGF-beta in confluent SMC cultures. In mitogenesis assays using confluent cells, TGF-beta was found to potentiate the stimulatory effects of serum, PDGF, and basic fibroblast growth factor (bFGF), and was shown to act individually as a mitogen for SMC. In gene and protein expression experiments, TGF-beta was found to regulate the expression of PDGF-A and thrombospondin, two potential mediators of SMC proliferative events. The induction of thrombospondin protein and mRNA was density-dependent, delayed relative to its induction by PDGF and, based on cycloheximide experiments, appeared to depend on the de novo synthesis of an intermediary protein (probably PDGF-A). The relationship between PDGF-A expression and TGF-beta-mediated mitogenesis was investigated, and it was determined that a PDGF-like activity (probably PDGF-A) was the biological mediator of the growth-stimulatory effects of TGF-beta on confluent SMC. The effects of purified homodimers of PDGF-A on SMC replication were investigated, and it was determined that PDGF-AA was mitogenic for cultured SMC, particularly when used in combination with other growth factors such as bFGF and PDGF-BB. The data suggest several molecular mechanisms that may account for the ability of TGF-beta to promote the growth of confluent SMC in culture.  相似文献   

5.
6.
Mesenchymal cells, primarily fibroblasts and myofibroblasts, are the principal matrix-producing cells during pulmonary fibrogenesis. Transforming growth factor (TGF)-beta signaling plays an important role in stimulating the expression of type I collagen of these cells. Bone morphogenetic protein (BMP)-7, a member of the TGF-beta superfamily, has been reported to oppose the fibrogenic activity of TGF-beta1. Here, we have addressed the effects of BMP-7 on the fibrogenic activity of pulmonary myofibroblasts. We first established cell lines from the lungs of transgenic mice harboring the COL1A2 upstream sequence fused to luciferase. They displayed a spindle shape and expressed vimentin and alpha-smooth muscle actin, but not E-cadherin. COL1A2 promoter activity was dose dependently induced by TGF-beta1, which was further augmented by adenoviral overexpression of Smad3, but was downregulated by Smad7. Under the identical condition, adenoviral overexpression of BMP-7 attenuated the TGF-beta1-dependent COL1A2 promoter activity. By immunocytochemistry, the ectopic expression of BMP-7 led to the nuclear localization of phospho-Smad1/5/8 and suppressed that of Smad3. BMP-7 suppressed the expression of mRNAs for COL1A2 and tissue inhibitor of metalloproteinase-2 while increasing those of inhibitors of differentiation (Id) 2 and 3. Ectopic expression of Id2 and Id3 was found to decrease the COL1A2 promoter activity. Finally, BMP-7 and Id2 decreased TGF-beta1-dependent collagen protein secretion. In conclusion, these data demonstrate that BMP-7 antagonizes the TGF-beta1-dependent fibrogenic activity of mouse pulmonary myofibroblastic cells by inducing Id2 and Id3.  相似文献   

7.
Vascular injury stimulates the cytokine-growth factor network in the vascular wall, including transforming growth factor-beta (TGF-beta). Reportedly, the intracellular signaling of TGF-beta is mediated by Smad proteins. We tested the effects of the ectopic expression of inhibitory Smads in cultured rat smooth muscle cells (SMC) to identify the role of TGF-beta/Smad signaling on the phenotypic modulation of SMC. The cells exposed to human recombinant TGF-beta1 (10 ng/ml) were stimulated Smad2 phosphorylation. Infection with the replication-deficient adenovirus vector expressing Smad7, but not bacterial beta-galactosidase or Smad6, was found to inhibit TGF-beta-induced Smad2 phosphorylation in a dose-dependent manner. TGF-beta suppressed the serum-induced proliferation of SMC from 36.3% to 51.0% (p<0.01), as measured by hand-counting, and this inhibition was attenuated by the ectopic expression of Smad7 (from 30.7% to 74.8% of the reduction of TGF-beta-response, p<0.05), but not Smad6. A BrdU incorporation assay also showed that TGF-beta-mediated growth inhibition was attenuated by exogenous Smad7 and that this inhibition can be reversed by an additional expression of exogenous Smad2. TGF-beta increased the expression of alpha-smooth muscle actin and myosin heavy chain by 1.3-fold and 1.6-fold in comparison to the control, respectively, and these increases were attenuated by exogenous Smad7, but not Smad6. Our data indicate that Smads mediate TGF-beta responses on SMC phenotypes. Smad7, but not Smad6, may specifically act as an inhibitor of TGF-beta responses.  相似文献   

8.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

9.
Excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in atherosclerotic plaque growth. In this study, we investigated whether SMCs from vessels with different atherogenicity exhibit distinct growth and migratory potential and investigated the underlying mechanisms. In fat-fed rabbits, we found increased cell proliferation and atheroma formation in the aortic arch versus the femoral artery. When examined in culture, SMCs isolated from the aortic arch (ASMCs) displayed a greater capacity for inducible proliferation and migration than paired cultures of femoral artery SMCs. Two lines of evidence suggested that distinct regulation of the growth suppressor p27(Kip1) (p27) contributes to establishing these phenotypic dissimilarities. First, p27 expression was comparably lower in ASMCs, which exhibited a higher fraction of p27 phosphorylated on Thr-187 and ubiquitinated. Second, forced p27 overexpression in ASMCs impaired their proliferative and migratory potential. We found that platelet-derived growth factor-BB-dependent induction of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was comparably higher in ASMCs. Importantly, pharmacological inhibition of MAPKs increased p27 expression and attenuated ASMC proliferation and migration. In contrast, forced MAPK activation diminished p27 expression and markedly augmented femoral artery SMC proliferation and migration. We propose that intrinsic differences in the regulation of MAPKs and p27 play an important role in creating variance in the proliferative and migratory capacity of vascular SMCs, which might in turn contribute to establishing regional variability in atherogenicity.  相似文献   

10.
Vascular smooth muscle cells (SMCs) undergo morphological and phenotypic changes when cultured in vitro. To investigate whether SMC morphology regulates SMC functions, bovine aortic SMCs were grown on micropatterned collagen strips (50-, 30-, and 20-microm wide). The cell shape index and proliferation rate of SMCs on 30- and 20-microm strips were significantly lower than those on non-patterned collagen (control), and the spreading area was decreased only for cells patterned on the 20-microm strips, suggesting that SMC proliferation is dependent on cell shape index. The formation of actin stress fibers and the expression of alpha-actin were decreased in SMCs on the 20- and 30-microm collagen strips. SMCs cultured on micropatterned biomaterial poly-(D,L-lactide-co-glycolide) (PLGA) with 30-microm wide grooves also showed lower proliferation rate and less stress fibers than SMCs on non-patterned PLGA. Our findings suggest that micropatterned matrix proteins and topography can be used to control SMC morphology and that elongated cell morphology decreases SMC proliferation but is not sufficient to promote contractile phenotype.  相似文献   

11.
Removal of vascular smooth muscle cells (SMC) from their native environment alters the biochemical and mechanical signals responsible for maintaining normal cell function, causing a shift from a quiescent, contractile phenotype to a more proliferative, synthetic state. We examined the effect on SMC function of culture on two-dimensional (2D) substrates and in three-dimensional (3D) collagen Type I gels, including the effect of exogenous biochemical stimulation on gel compaction, cell proliferation, and expression of the contractile protein smooth muscle alpha-actin (SMA) in these systems. Embedding of SMC in 3D collagen matrices caused a marked decrease in both cell proliferation and expression of SMA. The presence of the extracellular matrix modulated cellular responses to platelet-derived growth factor BB, heparin, transforming growth factor-beta1, and endothelial cell-conditioned medium. Cell proliferation and SMA expression were shown to be inversely related, while gel compaction and SMA expression were not correlated. Taken together, these results show that SMC phenotype and function can be modulated using biochemical stimulation in vitro, but that the effects produced are dependent on the nature of the extracellular matrix. These findings have implications for the study of vascular biology in vitro, as well as for the development of engineered vascular tissues.  相似文献   

12.
13.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

14.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

15.
16.
The bone morphogenetic protein (BMP) family, the largest subfamily of the structurally conserved transforming growth factor-beta (TGF-beta) superfamily of growth factors, are multifunctional regulators of development, proliferation, and differentiation. The TGF-beta type III receptor (TbetaRIII or betaglycan) is an abundant cell surface proteoglycan that has been well characterized as a TGF-beta and inhibin receptor. Here we demonstrate that TbetaRIII functions as a BMP cell surface receptor. TbetaRIII directly and specifically binds to multiple members of the BMP subfamily, including BMP-2, BMP-4, BMP-7, and GDF-5, with similar kinetics and ligand binding domains as previously identified for TGF-beta. TbetaRIII also enhances ligand binding to the BMP type I receptors, whereas short hairpin RNA-mediated silencing of endogenous TbetaRIII attenuates BMP-mediated Smad1 phosphorylation. Using a biologically relevant model for TbetaRIII function, we demonstrate that BMP-2 specifically stimulates TbetaRIII-mediated epithelial to mesenchymal cell transformation. The ability of TbetaRIII to serve as a cell surface receptor and mediate BMP, inhibin, and TGF-beta signaling suggests a broader role for TbetaRIII in orchestrating TGF-beta superfamily signaling.  相似文献   

17.
18.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

19.
Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538-540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [(3)H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals.  相似文献   

20.
Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells   总被引:21,自引:0,他引:21  
Bone morphogenetic protein-15 (BMP-15), an oocyte growth factor belonging to the transforming growth factor-beta superfamily, has recently been shown to be necessary for normal female fertility in mammals. We have previously demonstrated that BMP-15 regulates granulosa cell (GC) proliferation and differentiation; namely, BMP-15 promotes GC mitosis, suppresses follicle-stimulating hormone (FSH) receptor expression, and stimulates kit ligand expression. Although the role of BMP-15 in female reproduction has progressively deserved much attention, there is nothing known to date about the signaling pathway and receptors for BMP-15. Using rat primary GCs and a human GC cell line, COV434, we have now found that administration of BMP-15 causes a rapid and transient phosphorylation, thus activation, of the Smad1/5/8 pathway. BMP-15 also stimulated promoter activity of a selective BMP-responsive reporter construct, further demonstrating the stimulation of Smad1/5/8 signaling by BMP-15. In contrast, BMP-15 stimulation of Smad2 phosphorylation was very weak. To identify the receptors for BMP-15, we utilized recombinant extracellular domains of individual transforming growth factor-beta superfamily receptors and found that activin receptor-like kinase-6 extracellular domain most effectively co-immunoprecipitates with BMP-15, whereas BMP receptor type II extracellular domain was most effective in inhibiting BMP-15 bioactivity on FSH-induced progesterone production and GC thymidine incorporation. We also investigated whether activation of the MAPK pathway is necessary for BMP-15 biological activity and found that the addition of U0126, an inhibitor of ERK1/2 phosphorylation, suppresses BMP-15 activity on GC mitotsis but not on FSH-induced progesterone production, suggesting a selective signaling cascade in GC proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号