首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mutations in the genes ced-3 and ced-4 prevent almost all of the programmed cell deaths that occur during Caenorhabditis elegans development. To determine the sites of action of these two genes, we performed genetic mosaic analyses. We generated C. elegans animals that carried a free chromosomal duplication bearing either ced-3(+) or ced-4(+) in an otherwise homozygous ced-3 or ced-4 genetic background. We used other genes on the duplication as markers to identify genetic mosaic animals in which the duplication was present in some but not all cells. The patterns of cell death survivors in these mosaic animals indicated that the products of both ced-3 and ced-4 function within dying cells to cause cell death.  相似文献   

2.
Genetic control of programmed cell death in the nematode C. elegans   总被引:41,自引:0,他引:41  
H M Ellis  H R Horvitz 《Cell》1986,44(6):817-829
The wild-type functions of the genes ced-3 and ced-4 are required for the initiation of programmed cell deaths in the nematode Caenorhabditis elegans. The reduction or loss of ced-3 or ced-4 function results in a transformation in the fates of cells that normally die; in ced-3 or ced-4 mutants, such cells instead survive and differentiate, adopting fates that in the wild type and associated with other cells. ced-3 and ced-4 mutants appear grossly normal in morphology and behavior, indicating that programmed cell death is not an essential aspect of nematode development. The genes ced-3 and ced-4 define the first known step of a developmental pathway for programmed cell death, suggesting that these genes may be involved in determining which cells die during C. elegans development.  相似文献   

3.
The genes ced-3, ced-4 and ced-9 are central components in the cell death pathway of the nematode C. elegans. Ced-9, which functions to inhibit cell death, is homologous to the Bcl-2 family of mammalian anti-apoptotic genes. The ced-3 gene encodes a protein homologous to the caspases, a family of cysteine proteases involved in the execution of programmed cell death. It has recently been demonstrated that CED-4, an inducer of apoptosis for which no mammalian equivalent has been reported, can interact with CED-9 and Bcl-x(L). Here we confirm that CED-9 and CED-4 interact and using a series of deletion mutants, demonstrate that only short N-terminal deletions are tolerated in each molecule without loss-of-interaction. Two loss-of-function point mutations in different regions of CED-4 also lead to a significant loss of interaction suggesting further that the relevant interaction domains are not short linear sequences, but rather, are formed by more complex structural determinants in each molecule. Furthermore, we demonstrate that CED-4 not only interacts with Bcl-x(L) but also with its homologue, Bcl-2, and that the unstructured loop region present in Bcl-x(L) and Bcl-2 can regulate the CED-4 interaction. Lastly, we show that a BH3 peptide that can inhibit Bcl-2 family interactions also inhibits the interaction between Bcl-x(L) and CED-4.  相似文献   

4.
Joshi P  Eisenmann DM 《Genetics》2004,167(2):673-685
Programmed cell death (PCD) is regulated by multiple evolutionarily conserved mechanisms to ensure the survival of the cell. Here we describe pvl-5, a gene that likely regulates PCD in Caenorhabditis elegans. In wild-type hermaphrodites at the L2 stage there are 11 Pn.p hypodermal cells in the ventral midline arrayed along the anterior-posterior axis and 6 of these cells become the vulval precursor cells. In pvl-5(ga87) animals there are fewer Pn.p cells (average of 7.0) present at this time. Lineage analysis reveals that the missing Pn.p cells die around the time of the L1 molt in a manner that often resembles the programmed cell deaths that occur normally in C. elegans development. This Pn.p cell death is suppressed by mutations in the caspase gene ced-3 and in the bcl-2 homolog ced-9, suggesting that the Pn.p cells are dying by PCD in pvl-5 mutants. Surprisingly, the Pn.p cell death is not suppressed by loss of ced-4 function. ced-4 (Apaf-1) is required for all previously known apoptotic cell deaths in C. elegans. This suggests that loss of pvl-5 function leads to the activation of a ced-3-dependent, ced-4-independent form of PCD and that pvl-5 may normally function to protect cells from inappropriate activation of the apoptotic pathway.  相似文献   

5.
L Avery  H R Horvitz 《Cell》1987,51(6):1071-1078
Mutations in the C. elegans gene ced-3 prevent almost all programmed cell deaths, so that in a ced-3 mutant there are many extra cells. We show that the pharyngeal neuron M4 is essential for feeding in wild-type worms, but in a ced-3 mutant, one of the extra cells, probably MSpaaaaap (the sister of M4), can sometimes take over M4's function. The function of MSpaaaaap, unlike that of M4, is variable and subnormal. One possible explanation is that its fate, being hidden by death and not subject to selection, has drifted randomly during evolution. We suggest that such cells may play roles in the evolution of cell lineage analogous to those played by pseudogenes in the evolution of genomes.  相似文献   

6.
In plants, events similar to programmed cell death have been reported [1] [2], although little is known of their mechanisms at the molecular level. To investigate the mechanism(s) involved, we overexpressed bcl-x(L), which encodes a mammalian suppressor of programmed cell death, in tobacco plants, under the control of a strong promoter [3]. In plants expressing Bcl-x(L), cell death induced by UV-B irradiation, paraquat treatment or the hypersensitive reaction (HR) to tobacco mosaic virus (TMV) infection was suppressed. The extent of suppression of cell death depended on the amount of Bcl-x(L) protein expressed. Similar enhanced resistance to cell death was found in transgenic tobacco plants overexpressing the ced-9 gene, a Caenorhabditis elegans homolog of bcl-x(L) [4], indicating that Bcl-x(L) and Ced-9 can function to inhibit cell death in plants.  相似文献   

7.
Loss-of-function mutations in the gene ced-8 lead to the late appearance of cell corpses during embryonic development in C. elegans. ced-8 functions downstream of or in parallel to-the regulatory cell death gene ced-9 and may function as a cell death effector downstream of the caspase encoded by the programmed cell death killer gene ced-3. In ced-8 mutants, embryonic programmed cell death probably initiates normally but proceeds slowly. ced-8 encodes a transmembrane protein that appears to be localized to the plasma membrane. The CED-8 protein is similar to human XK, a putative membrane transport protein implicated in McLeod Syndrome, a form of hereditary neuroacanthocytosis.  相似文献   

8.
Huang CY  Chen JY  Wu SC  Tan CH  Tzeng RY  Lu PJ  Wu YF  Chen RH  Wu YC 《PloS one》2012,7(5):e36584
Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein), CED-9 (Bcl-2), and CED-4 (Apaf-1) act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k) that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution.  相似文献   

9.
10.
11.
Programmed cell death, or apoptosis, occurs throughout the course of normal development in most animals and can also be elicited by a number of stimuli such as growth factor deprivation and viral infection. Certain morphological and biochemical characteristics of programmed cell death are similar among different tissues and species. During development of the nematode Caenorhabditis elegans, a single genetic pathway promotes the death of selected cells in a lineally fixed pattern. This pathway appears to be conserved among animal species. The baculovirus p35-encoding gene (p35) is an inhibitor of virus-induced apoptosis in insect cells. Here we demonstrate that expression of p35 in C. elegans prevents death of cells normally programmed to die. This suppression of developmentally programmed cell death results in appearance of extra surviving cells. Expression of p35 can rescue the embryonic lethality of a mutation in ced-9, an endogenous gene homologous to the mammalian apoptotic suppressor bcl-2, whose absence leads to ectopic cell deaths. These results support the hypothesis that viral infection can activate the same cell death pathway as is used during normal development and suggest that baculovirus p35 may act downstream or independently of ced-9 in this pathway.  相似文献   

12.
Members of the the Bcl-2 and ICE/ced-3 gene families have been implicated as essential components in the control of the cell death pathway. Bcl-2 overexpression can prevent programmed cell death (PCD) in different cell types. ICE/ced-3-like proteases are synthesized as pro-enzymes and are activated by limited proteolysis. When overexpressed in diverse cell types, they trigger PCD. Bcl-2 can inhibit PCD mediated by these proteases, although as yet it is not clear at what specific step in the cell death pathway the protein acts. Here, we demonstrate that CPP32/Yama/Apopain, a member of the ICE/Ced-3 gene family, is processed during staurosporine-induced apoptosis in HeLa cells and that concomitant with CPP32 activation, two other proteins, poly (ADP-ribose) polymerase (PARP) and the U1-70 K small ribonucleoprotein, also undergo proteolysis. Overexpression of Bcl-2 prevents cleavage of CPP32, PARP and U1-70 K and protects HeLa cells from PCD. These results demonstrate that Bcl-2 controls PCD, by acting upstream of CPP32/Yama/Apopain.  相似文献   

13.
Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway.  相似文献   

14.
In the nematode Caenorhabditis elegans, CED-4 plays a central role in the regulation of programmed cell death. To identify proteins with essential or pleiotropic activities that might also regulate cell death, we used the yeast two-hybrid system to screen for CED-4-binding proteins. We identified MAC-1, a member of the AAA family of ATPases that is similar to Smallminded of Drosophila. Immunoprecipitation studies confirm that MAC-1 interacts with CED-4, and also with Apaf-1, the mammalian homologue of CED-4. Furthermore, MAC-1 can form a multi-protein complex that also includes CED-3 or CED-9. A MAC-1 transgene under the control of a heat shock promoter prevents some natural cell deaths in C. elegans, and this protection is enhanced in a ced-9(n1950sd)/+ genetic background. We observe a similar effect in mammalian cells, where expression of MAC-1 can prevent CED-4 and CED-3 from inducing apoptosis. Finally, mac-1 is an essential gene, since inactivation by RNA-mediated interference causes worms to arrest early in larval development. This arrest is similar to that observed in Smallminded mutants, but is not related to the ability of MAC-1 to bind CED-4, since it still occurs in ced-3 or ced-4 null mutants. These results suggest that MAC-1 identifies a new class of proteins that are essential for development, and which might regulate cell death in specific circumstances.  相似文献   

15.
Zhou Z  Hartwieg E  Horvitz HR 《Cell》2001,104(1):43-56
We cloned the C. elegans gene ced-1, which is required for the engulfment of cells undergoing programmed cell death. ced-1 encodes a transmembrane protein similar to human SREC (Scavenger Receptor from Endothelial Cells). We showed that ced-1 is expressed in and functions in engulfing cells. The CED-1 protein localizes to cell membranes and clusters around neighboring cell corpses. CED-1 failed to cluster around cell corpses in mutants defective in the engulfment gene ced-7. Motifs in the intracellular domain of CED-1 known to interact with PTB and SH2 domains were necessary for engulfment but not for clustering. Our results indicate that CED-1 is a cell surface phagocytic receptor that recognizes cell corpses. We suggest that the ABC transporter CED-7 promotes cell corpse recognition by CED-1, possibly by exposing a phospholipid ligand on the surfaces of cell corpses.  相似文献   

16.
Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called "eat-me" signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6-null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered.  相似文献   

17.
《The Journal of cell biology》1996,133(5):1041-1051
In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that conclusion depends on the evidence that STS-induced, and (STS + CHS)-induced, cell deaths are bona fide examples of PCD. There is rapidly accumulating evidence that some members of the Ced-3/Interleukin-1 beta converting enzyme (ICE) family of cysteine proteases are part of the basic machinery of PCD. Here we show that Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a cell-permeable, irreversible, tripeptide inhibitor of some of these proteases, suppresses STS-induced and (STS + CHX)-induced cell death in a wide variety of mammalian cell types, including anucleate cytoplasts, providing strong evidence that these are all bona fide examples of PCD. We show that the Ced-3/ICE family member CPP32 becomes activated in STS- induced PCD, and that Bcl-2 inhibits this activation. Most important, we show that, in some cells at least, one or more CPP32-family members, but not ICE itself, is required for STS-induced PCD. Finally, we show that zVAD-fmk suppresses PCD in the interdigital webs in developing mouse paws and blocks the removal of web tissue during digit development, suggesting that this inhibition will be a useful tool for investigating the roles of PCD in various developmental processes.  相似文献   

18.
Genetic analysis of programmed cell death in Caenorhabditis elegans has led to the identification of 13 genes that constitute a developmental pathway of programmed cell death. Two of the three key genes in this pathway, ced-9, a cell death suppressor, and ced-3, a cell death inducer, were found to encode proteins that share structural and functional similarities with the mammalian proto-oncogene product Bcl-2 and interleukin-1β converting enzyme, respectively. These results suggest that the genetic pathway of programmed cell death may be evolutionarily conserved from worms to mammals. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Our previous data showed that apoptotic suppressors inhibit aluminum (Al)-induced programmed cell death (PCD) and promote Al tolerance in yeast cells, however, very little is known about the underlying mechanisms, especially in plants. Here, we show that the Caenorhabditis elegans apoptotic suppressor Ced-9, a Bcl-2 homologue, inhibited both the Al-induced PCD and Al-induced activity of caspase-like vacuolar processing enzyme (VPE), a crucial executioner of PCD, in tobacco. Furthermore, we show that Ced-9 significantly alleviated Al inhibition of root elongation, decreased Al accumulation in the root tip and greatly inhibited Al-induced gene expression in early response to Al, leading to enhancing the tolerance of tobacco plants to Al toxicity. Our data suggest that Ced-9 promotes Al tolerance in plants via inhibition of Al-induced PCD, indicating that conserved negative regulators of PCD are involved in integrated regulation of cell survival and Al-induced PCD by an unidentified mechanism.  相似文献   

20.
Apaf1 and the apoptotic machinery   总被引:8,自引:0,他引:8  
The molecular characterization of the Caenorhabditis elegans cell death genes has been crucial in revealing some of the biochemical mechanisms underlying apoptosis in all animals. Four C. elegans genes, egl-1, ced-9, ced-4 and ced-3 are required for all somatic programmed cell death to occur. This genetic network is highly conserved during evolution. The pro-death gene egl-1 and the anti-death gene ced-9 have structural and functional similarities to the vertebrate Bcl2 gene family. The killer gene ced-3 encodes a cystein-aspartate protease (caspase), which is the archetype of a family of conserved proteins known as effectors of apoptosis in mammals. Zou and collaborators1 reported the biochemical identification of an apoptotic protease activating factor (Apaf1), a human homolog of C. elegans CED-4, providing important clues to how CED-4 and its potential relatives could work. A number of proteins have been shown to interact with Apaf1 or to be determinant for its activity as an apoptotic adapter. The aim of this review is to provide an overview of the recent progress made in the field of developmental apoptosis by means of the murine Apaf1 targeted mutations. The central role of Apaf1 in the cell death machinery (apoptosome) and its involvement in different apoptotic pathways will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号