首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

2.
3.
The proteasome is a multi-subunit protease complex that is involved in intracellular protein degradation in eukaryotes. Previously, we have reported that selective, synthetic chymotryptic proteasome inhibitors inhibit A-NK cell-mediated cytotoxicity by approximately 50%; however, the exact role of the proteasome in NK cell-mediated cytotoxicity remains unknown. Herein, we report that proteasome inhibitors, MG115 and MG132, decreased the proteasome chymotrypsin-like activity in the rat natural killer cell line RNK16 by 85% at a concentration of 5 microM. The viability of RNK16 cells was also reduced in the presence of these inhibitors. Both inhibitors induced the apoptosis of RNK16 cells, as shown by DNA fragmentation, caspase-3 activation and the appearance of sub-G-cell populations. An increase in the fraction of apoptotic cells was observed in a dose- and time-dependent manner in our studies. In addition, the activity of caspase-1, -2, -6, -7, -8, and -9, was increased following the treatment of RNK16 cells with these inhibitors. Further investigation revealed that the expression of Fas (CD95) protein on the RNK16 cell surface was increased after the treatment by MG115 or MG132, indicating that apoptosis induced by proteasome inhibitors in RNK16 cells might be mediated through the Fas (CD95)-mediated death pathway as well. Our studies indicate, for the first time, that proteasomal chymotryptic inhibitors can reduce natural killer cell viability and therefore indirectly inhibit cell-mediated cytotoxicity via the apoptosis-inducing properties of these agents.  相似文献   

4.
This study was undertaken to investigate whether a physiologically compatible concentration of 7-ketocholesterol had any effect on human vascular smooth muscle cells (HVSMCs). We found that 7-ketocholesterol changed the viability of human aorta smooth muscle cells (HAoSMC) not by cytotoxicity but by activation of tumor necrosis factor-alpha receptor (TNFR)-mediated death. Whereas TNF-alpha did not affect the viability in the presence of 7alpha-hydroxycholesterol or cholesterol, the cytokine induced HAoSMC death in the presence of 7-ketocholesterol as detected by morphology, viability, and fragmentation of chromosomal DNA. The HAoSMC death was inhibited by a neutralizing anti-TNF receptor 1 (TNFR1) antibody and by the caspase inhibitors of z-VAD and z-DEVD. Activations of caspase-8 and -3 were detected from dying HAoSMCs. 7-Ketocholesterol inhibited translocation of the nuclear factor kappaB (NF-kappaB) subunits of p65 and p50 from the cytosol into the nucleus, increase of NF-kappaB activity, and expression of caspase-8 homolog Fas ligand interleukin-1-converting enzyme inhibitory protein by TNF-alpha. We also found that X-chromosome-linked inhibitor of apoptosis protein was degraded in dying HAoSMC. The present study proposes that 7-ketocholesterol would contribute to the disappearance of HVSMC in the atherosclerotic lesions by enhancing receptor-mediated death. This is the first report demonstrating induction of TNF-alpha-mediated death by oxysterol in cells.  相似文献   

5.
The Fas antigen is a member of the tumor necrosis factor/nerve growth factor receptor family and is expressed in tissues such as the thymus, liver, and ovary. Agonistic anti-Fas antibodies have cytolytic activity against cell lines expressing the Fas antigen. In this study, we show that anti-Fas antibody can induce the death of mouse hepatocytes in primary culture. Cell death via apoptosis was evidenced by the fact that the dying cells displayed DNA fragmentation, extensive surface bleb formation, and chromatin condensation. Anti-Fas antibody alone induced apoptosis in less than 20% of the cultured hepatocytes, whereas all cells were killed within 24 h by anti-Fas antibody in the presence of actinomycin D, cycloheximide, or protein kinase C (PKC) inhibitors such as H-7 and HA1004. These results indicate that the Fas antigen expressed in mouse hepatocytes functionally transduces the apoptotic signal and suggest that cultured mouse hepatocytes express protective proteins against apoptosis and that phosphorylation by PKC is also involved in protection of the hepatocytes from Fas-mediated apoptosis.  相似文献   

6.
Activation of either tumor necrosis factor receptor 1 or Fas induces a low level of programmed cell death in LNCaP human prostate cancer cells. We have shown that LNCaP cells are entirely resistant to gamma-radiation-induced apoptosis, but can be sensitized to irradiation by TNF-alpha. Fas activation also sensitized LNCaP cells to irradiation, causing nearly 40% cell death 72 h after irradiation. Caspase-8 was cleaved and activated after exposure to tumor necrosis factor (TNF)-alpha. However, after exposure to anti-Fas antibody caspase-8 cleavage occurred only between the 26-kDa N-terminal prodomain and the 28-kDa C-terminal region that contains the protease components. Although anti-Fas antibody plus irradiation induced apoptosis that could be blocked by the pancaspase inhibitor zVAD, there was no measurable caspase-8 activity after exposure to anti-Fas antibody. The effector caspases-6 and -7, and to a lesser extent caspase-3, were activated by TNF-alpha, but not by anti-Fas antibody. Anti-Fas antibody, like TNF-alpha also activated serine proteases that contributed to cell death. Exposure of LNCaP cells simultaneously to TNF-alpha and anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis that occurred very rapidly and was still further augmented by irradiation. Rapid apoptosis that ensued from combined treatment with TNF-alpha, anti-Fas antibody, and irradiation was completely blocked either by zVAD or expression of dominant negative Fas-associated death domain. Our data shows that there are qualitative differences in caspase activation resulting from either TNF receptor 1 or Fas. Simultaneous activation of these receptors was synergistic and caused rapid epithelial cell apoptosis mediated by the caspase cascade.  相似文献   

7.
Chondrocyte apoptosis can be an important contributor to cartilage degeneration, thereby making it a potential therapeutic target in articular diseases. To search for new approaches to limit chondrocytic cell death, we investigated the requirement of polyamines for apoptosis favored by tumor necrosis factor-alpha (TNF), using specific polyamine biosynthesis inhibitors in human chondrocytes. The combined treatment of C-28/I2 chondrocytes with TNF and cycloheximide (CHX) resulted in a prompt effector caspase activation and internucleosomal DNA fragmentation. Pre-treatment of chondrocytes with alpha-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, markedly reduced putrescine and spermidine content as well as the caspase-3 activation and DNA fragmentation induced by TNF and CHX. DFMO treatment also inhibited the increase in effector caspase activity provoked by TNF plus MG132, a proteasome inhibitor. DFMO decreased caspase-8 activity and procaspase-8 content, an apical caspase essential for TNF-induced apoptosis. Although DFMO increased the amount of active, phosphorylated Akt, inhibitors of the Akt pathway failed to restore the TNF-induced increase in caspase activity blunted by DFMO. DFMO also reduced the increase in caspase activity induced by staurosporine, but in this case Akt inhibition prevented the DFMO effect. Pre-treatment with CGP 48664, an S-adenosylmethionine decarboxylase (SAMDC) inhibitor markedly reduced spermidine and spermine levels, and provoked effects similar to those caused by DFMO. Finally DFMO was effective even in primary osteoarthritis (OA) chondrocyte cultures. These results suggest that the intracellular depletion of polyamines in chondrocytes can inhibit both the death receptor pathway by reducing the level of procaspase-8, and the apoptotic mitochondrial pathway by activating Akt.  相似文献   

8.
Tumor necrosis factor-alpha receptor 1 and Fas recruit overlapping signaling pathways. To clarify the differences between tumor necrosis factor alpha (TNFalpha) and Fas pathways in hepatocyte apoptosis, primary mouse hepatocytes were treated with TNFalpha or an agonist anti-Fas antibody after infection with an adenovirus expressing an IkappaB superrepressor (Ad5IkappaB). Treatment with TNFalpha induced apoptosis in Ad5IkappaB-infected mouse hepatocytes, as we previously reported for rat hepatocytes. Ad5IkappaB plus anti-Fas antibody or actinomycin D plus anti-Fas antibody rapidly induced apoptosis, whereas anti-Fas antibody alone produced little cytotoxicity. The proteasome inhibitor (MG-132) and a dominant-negative mutant of nuclear factor-kappaB-inducing kinase also promoted TNFalpha- and Fas-mediated apoptosis. Expression of either crmA or a dominant-negative mutant of the Fas-associated death domain protein prevented TNFalpha- and Fas-mediated apoptosis. In addition, the caspase inhibitors, DEVD-cho and IETD-fmk, inhibited TNFalpha- and Fas-mediated apoptosis. In Ad5IkappaB-infected hepatocytes, caspases-3 and -8 were activated within 2 h after treatment with anti-Fas antibody or within 6 h after TNFalpha treatment. Confocal microscopy demonstrated onset of the mitochondrial permeability transition (MPT) and mitochondrial depolarization by 2-3 h after anti-Fas antibody treatment and 8-10 h after TNFalpha treatment, followed by cytochrome c release. The combination of the MPT inhibitors, cyclosporin A, and trifluoperazine, protected Ad5IkappaB-infected hepatocytes from TNFalpha-mediated apoptosis. After anti-Fas antibody, cyclosporin A and trifluoperazine decreased cytochrome c release but did not prevent caspase-3 activation and cell-death. In conclusion, nuclear factor-kappaB activation protects mouse hepatocytes against both TNFalpha- and Fas-mediated apoptosis. TNFalpha and Fas recruit similar but nonidentical, pathways signaling apoptosis. The MPT is obligatory for TNFalpha-induced apoptosis. In Fas-mediated apoptosis, the MPT accelerates the apoptogenic events but is not obligatory for them.  相似文献   

9.
Apoptosis by a cytosolic extract from Fas-activated cells.   总被引:9,自引:1,他引:8       下载免费PDF全文
M Enari  A Hase    S Nagata 《The EMBO journal》1995,14(21):5201-5208
Fas is a type I membrane protein and its activation by binding of the Fas ligand or an agonistic anti-Fas antibody induces apoptosis in Fas-bearing cells. In this report we prepared lysates from cells treated with anti-Fas antibody. The lysates induced apoptotic morphological changes in nuclei from normal mouse liver, accompanied by DNA degradation. The apoptosis-inducing activity was quickly generated in cells by anti-Fas antibody and was found in the soluble cytosolic fraction. Induction of the activity in cells was inhibited by a tetrapeptide, acetyl-Tyr-Val-Ala-Asp-chloromethylketone, a specific inhibitor of interleukin-1 beta converting enzyme. Addition of COS cell lysates containing Bcl-2 to the assay significantly inhibited the apoptotic process, indicating that the in vitro process reflected apoptosis that occurs in intact cells.  相似文献   

10.
We previously established that NF-kappaB DNA binding activity is required for Sindbis Virus (SV)-induced apoptosis. To investigate whether SV induces nuclear translocation of NF-kappaB via the proteasomal degradation pathway, we utilized MG132, a peptide aldehyde inhibitor of the catalytic subunit of the proteasome. 20 microM MG132 completely abrogated SV-induced NF-kappaB nuclear activity at early time points after infection. Parallel measures of cell viability 48 h after SV infection revealed that 20 microM MG132 induced apoptosis in uninfected cells. In contrast, a lower concentration of MG132 (200 nM) resulted in partial inhibition of SV-induced nuclear NF-kappaB activity and inhibition of SV-induced apoptosis without inducing toxicity in uninfected cells. The specific proteasomal inhibitor, lactacystin, also inhibited SV-induced death. Taken together, these results suggest that the pro-apoptotic and anti-apoptotic functions of peptide aldehyde proteasome inhibitors such as MG-132 depend on the concentration of inhibitor utilized and expand the list of stimuli requiring proteasomal activation to induce apoptosis to include viruses.  相似文献   

11.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

12.
The effect of transduction with a reverse fragment to a cDNA encoding human 6A8 ?-mannosidase on apoptosis induction of human B cell line SKW6 by anti-Fas antibody was tested. Apoptosis-inducer of anti-Fas monoclonal antibody was used to induce apoptosis in SKW6 cells. Giemsa’s staining, Annexin-V-FLUOS staining and DNA ladder test were used to determine the events of apoptosis. Indirect immunofluorescent staining with anti-Fas antibody was performed to detect the surface Fas expression. In a time-course test of 12, 24 and 36 h for apoptosis induction by anti-Fas antibody, DNA ladder was observed in the wild-type SKW6 cells in a time-dependent fashion. Mock transduction had no effect on DNA ladder production. However, no DNA ladder was detected in the rAAV-antisense 6A8 cDNA-transduced SKW6. Results from Annexin-V-FLUOS staining on anti-Fas antibody-treated cells revealed that the staining-positive rate in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells was decreased in comparison to that in the wild-type and the mock-transduced cells. Giemsa’s staining observation showed that the number of dying (with apoptotic bodies) and dead cells was reduced in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells in comparison with that in the wild-type and the mock-transduced cells upon anti-Fas antibody induction. The transduction did not affect the expression of Fas molecular on cell surface. 100% cells in all the groups showed Fas expression. The SKW6 cells became resistant to apoptosis induction by anti-Fas antibody upon transduction with a reverse fragment to a cDNA encoding human 6A8 a-mannosidase. The transduction did not affect the expression of Fas molecule on cells.  相似文献   

13.
The effect of transduction with a reverse fragment to a cDNA encoding human 6A8 α-mannosidase on apoptosis induction of human B cell line SKW6 by anti-Fas antibody was tested. Apoptosis-inducer of anti-Fas monoclonal antibody was used to induce apoptosis in SKW6 cells. Giemsa’s staining, Annexin-V-FLUOS staining and DNA ladder test were used to determine the events of apoptosis. Indirect immunofluorescent staining with anti-Fas antibody was performed to detect the surface Fas expression. In a time-course test of 12, 24 and 36 h for apoptosis induction by anti-Fas antibody, DNA ladder was observed in the wild-type SKW6 cells in a time-dependent fashion. Mock transduction had no effect on DNA ladder production. However, no DNA ladder was detected in the rAAV-antisense 6A8 cDNA-transduced SKW6. Results from Annexin-V-FLUOS staining on anti-Fas antibody-treated cells revealed that the staining-positive rate in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells was decreased in comparison to that in the wild-type and the mock-transduced cells. Giemsa’s staining observation showed that the number of dying (with apoptotic bodies) and dead cells was reduced in the rAAV-antisense 6A8 cDNA-transduced SKW6 cells in comparison with that in the wild-type and the mock-transduced cells upon anti-Fas antibody induction. The transduction did not affect the expression of Fas molecular on cell surface. 100% cells in all the groups showed Fas expression. The SKW6 cells became resistant to apoptosis induction by anti-Fas antibody upon transduction with a reverse fragment to a cDNA encoding human 6A8 α-mannosidase. The transduction did not affect the expression of Fas molecule on cells.  相似文献   

14.
Interferon-gamma (IFN-gamma) induces various apoptosis-related proteins, including Fas antigen (Fas) in keratinocytes. Ultraviolet B (UVB) irradiation produces "sunburn cells," a specific type of apoptosis. Previously, we reported that IFN-gamma augments Fas-dependent apoptosis of SV40-transformed human keratinocytes (SVHK cells). Caspases are a new class of cysteine proteinases that play an important role in apoptosis. We investigated the mechanism of UVB-induced apoptosis by examining activation of the caspase cascade. UVB irradiation of SVHK cells increased the activities of caspases 1, 3, and 8, which were detected at 3 h, and peak activities occurred at 6 h. Pretreatment of SVHK cells with IFN-gamma significantly increased the activity of caspases 1, 3, and 8. UVB-induced caspase 8 stimulation was significantly suppressed only by caspase 8 inhibitor, while inhibitors of caspases 1, 3, and 8 significantly suppressed UVB-induced caspase 1 stimulation. Caspase 3 and 8 inhibitors, but not caspase 1 inhibitor, significantly suppressed UVB-induced caspase 3 activity, suggesting sequential activation of caspases 8, 3, and 1 in UVB-irradiated SVHK cells. Cross-linking and immunoprecipitation analyses showed multimerization of Fas antigen following UVB irradiation of SVHK cells. Pretreatment of SVHK cells with IFN-gamma significantly augmented UVB-induced apoptosis that was accompanied by increased Fas expression. The susceptibility to UVB-induced apoptosis was also increased in Fas-transfected SVHK cells (F2 cells). Neutralizing anti-Fas antibody significantly suppressed caspase activation and Fas-dependent apoptosis of SVHK cells and F2 cells. In contrast, UVB-induced caspase activation and apoptosis were not inhibited by neutralizing anti-Fas antibody in both cell lines. Our results suggest that UVB directly activates Fas and subsequent caspase cascade resulting in apoptosis of SVHK cells. Furthermore, the expression level of Fas antigen in keratinocytes influenced their susceptibility to UVB-induced apoptosis.  相似文献   

15.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

16.
Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359]  相似文献   

17.
Morley SJ  Pain VM 《FEBS letters》2001,503(2-3):206-212
Previously, we have shown that translation eukaryotic initiation factor (eIF) 4GI is cleaved during anti-Fas-mediated apoptosis. Here, we have investigated the effects of the proteasome inhibitors, MG132 and lactacystin, and the immunosuppressants, 2-amino-2[2-(4-octylphenyl)ethyl]-1,3,propane diol (FTY720) and cyclosporin A, on the integrity of eIF4GI and eIF4GII in T cells. Using wild-type Jurkat T cells, we show that the proteasome inhibitors MG132 and lactacystin promote the cleavage of eIF4G, activate caspase-8 and caspase-3-like activities and decrease cell viability. Furthermore, MG132 also promotes the cleavage of eIF4G and the activation of caspase-3-like activity in a caspase-8-deficient Jurkat cell line which is resistant to anti-Fas-mediated apoptosis. Using specific anti-peptide antisera, we show that both eIF4GI and eIF4GII are cleaved in either cell line in response to MG132 and lactacystin. In response to such treatments, we demonstrate that the fragments of eIF4GI generated include those previously observed with anti-Fas antiserum together with a novel product which lacks the ability to interact with eIF4E. In contrast, cells treated with the immunosuppressants FTY720 and cyclosporin A appear to contain only the novel cleavage fragment of eIF4GI and to lack those characteristic of cells treated with anti-Fas antiserum. These data suggest that caspase-8 activation is not required for apoptosis and eIF4G cleavage mediated by proteasome inhibitors and immunosuppressants in human T cells.  相似文献   

18.
Adrenomedullin is a potent vasodilator peptide secreted by vascular endothelial and smooth muscle cells. Adrenomedullin stimulates the proliferation of quiescent rat vascular smooth muscle cells (VSMCs) via p42/p44 ERK/MAP kinase activation. Recently, receptor-activity-modifying proteins (RAMPs) have been shown to transport calcitonin-receptor-like-receptor (CRLR) to the cell surface to present either as CGRP receptor or adrenomedullin receptor. We investigated whether adrenomedullin acts as an autocrine/paracrine growth factor for cultured rat VSMCs and whether coexpressions of RAMP isoform and CRLR may mediate p42/p44 ERK/MAP kinase activation by adrenomedullin. Adrenomedullin dose-dependently stimulated the proliferation of quiescent rat VSMCs, and this effect was inhibited by an adrenomedullin receptor antagonist, a MAP kinase kinase inhibitor and phosphatidylinositol 3-kinase inhibitors. Addition of either CGRP(8-37) or anti-adrenomedullin antibody to exponentially growing rat VSMCs inhibited the serum-induced cell proliferation, suggesting its role as an autocrine/paracrine growth factor. Cotransfection of RAMP2 or RAMP3 with CRLR into rat VSMCs potentiated activation of cAMP activity, but not of p42/p44 ERK/MAP kinase activity in response to adrenomedullin. Our results suggest that adrenomedullin is an autocrine/paracrine growth factor for rat VSMCs via p42/p44 ERK/MAP kinase and phosphatidylinositol 3-kinase pathways and that it is not mediated by human RAMP-CRLR receptors.  相似文献   

19.
Tumor necrosis factor (TNF) and cytotoxic T lymphocytes, which utilize Fas to induce apoptosis in target cells, are known to play a critical role in the host defense against viral infection. In this study, the Epstein-Barr virus BHRF1 protein was stably expressed in intestine 407 cells which were susceptible to cell death mediated through both the TNF receptor and Fas. WST-1 conversion assays and acridine orange staining showed that vector-transfected control cells were killed by TNF-alpha or anti-Fas antibody in a dose-dependent manner, whereas BHRF1-expressing cells were resistant to apoptosis induced by these mediators. DNA fragmentation, a characteristic of apoptosis induced by TNF-alpha and the anti-Fas antibody, was suppressed in BHRF1-expressing cells. These results indicate that the BHRF1 protein protects cells from apoptosis mediated by the TNF receptor and Fas. The role of BHRF1 as an inhibitor of cytokine-induced apoptosis during the Epstein-Barr virus lytic cycle in vivo is discussed.  相似文献   

20.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号