首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is necessary for the proper development of stamens and carpels and the prevention of indeterminate growth of the floral meristem. Early in flower development, TAG1 RNA accumulates uniformly in the cells fated to differentiate into stamens and carpels and later becomes restricted to specific cell types within these organs. Transgenic plants that express TAG1 antisense RNA display homeotic conversion of third whorl stamens into petaloid organs and the replacement of fourth whorl carpels with pseudocarpels bearing indeterminate floral meristems with nested perianth flowers. A complementary phenotype was observed in transgenic plants expressing the TAG1 sense RNA in that first whorl sepals were converted into mature pericarpic leaves and sterile stamens replaced the second whorl petals.  相似文献   

2.
对4种同核异质小麦粘类非1BL/1RS雄性不育系、保持系和恢复系的幼苗叶片、乳熟期籽粒以及不育系、恢复系和F1小孢子发育四分体至三核期花药进行了细胞色素氧化酶(COD)同工酶聚丙烯酰胺凝腔电泳(PAGE)分析。结果表明:(1)幼苗叶片COD同工酶谱带可以标记4种不育系和保持系;乳熟期籽粒COD同工酶谱带可以将4种不育系、保持系及恢复系区别开。(2)COD在不育系小孢子败育时或败育之前(单核到二核期)酶量降低,面在三核期酶量升高。(3)相同胞质背景下引入不同核恢复基因或不同胞质背景下引入桢核恢复基因,F1小孢子COD同工酶谱带之间有差异。可以将不同发育时期COD同工酶谱带作为鉴别1种不育系以及不育系、保持系、恢复系(“三系”的可靠生化标记)。  相似文献   

3.
Several lines of evidence suggest that sterile floral organs, collectively known as the perianth, have evolved multiple times during the evolution of the angiosperms. In the family Aristolochiaceae, the perianth is formed by two whorls of organs in the genus Saruma but by only one whorl in the remaining genera, including Aristolochia. Although the morphology of Saruma is similar in appearance to the core eudicot perianth, with leaf-like sepals and showy colored petals, the unipartite perianth of Aristolochia combines morphological aspects of both calyx and corolla. To investigate the organ identity program functioning in the novel perianth of Aristolochia, we identified homologs of the B-class genes APETALA3 (AP3) and PISTILLATA (PI) in both Saruma and Aristolochia. The expression patterns of these genes in Saruma indicate they are functioning in the development of the second whorl petaloid organs and third whorl stamens. In Aristolochia, however, the expression of AP3 and PI homologs in the perianth does not suggest a role in organ identity but, rather, in promoting late aspects of cell differentiation. The implications of these findings for the evolution of both petaloidy and B gene function are discussed.  相似文献   

4.
5.
The flowers of a previously undescribed recessive mutant of tomato, green pistillate, show strong and consistent homeotic transformation of petals to sepals in whorl two and of stamens to carpels in whorl three. The phenotype at early and later stages is compared with wild type by scanning electron microscopy. Wild type and mutant show no difference in the pattern or timing of third whorl organ initiation, as shown by allometric analysis of scanning electron micrographs of early stages. This confirms that the mechanisms governing organ identity are distinct from those governing the positions and numbers of organs initiated; the former can be altered without changes in the latter. Mutant and wild type organs are compared by allometric analysis of dimensions of flowers dissected throughout development. The sepaloid petals (whorl 2) and the carpelloid stamens (whorl 3) in the mutant elongate at relative rates normal for the wild type organ of the whorls they occupy. This suggests that some aspects of organ growth, such as elongation rate, may also be independent of mechanisms governing organ identity.  相似文献   

6.
A study of the floral ontogeny of Popowia was carried out to investigate the phyllotactic arrangement of the floral organs and occurring trends in the androecium of Annonaceae. The flower buds arise on a common stalk in the axil of a bract. Three sepals emerge in quick succession and are rapidly overrun in size by two whorls of petals. The androecium is initiated centripetally in successive whorls. A first whorl of three pairs of outer staminodes emerges opposite the outer petals and is followed by nine staminodes. Next a whorl of nine fertile stamens arises in alternation with the second whorl of staminodes. The carpels arise in three alternating whorls of nine. The nature of the perianth parts is morphologically identical. The process of cyclisation of the androecium from a spiral is discussed for Annonaceae and Magnoliidae in general. The inception of the three outer stamen pairs is a widespread reductive step for multistaminate androecia in the process of oligomerization. It is proposed to define the cyclic inception of numerous stamens as whorled polyandry, being an intermediate step between true polyandry and a reduced stamen number in whorls. The absence of a cup-like shape in the carpel development is related to the flattened receptacle.  相似文献   

7.
Homeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation.  相似文献   

8.
The anatomy of each of the series of floral organs of Krameria lanceolata was examined. The sepals are characterized by three main veins each, an undifferentiated mesophyll, and stomata on the upper epidermis. The fleshy petals are distinguished by their numerous veins as well as by palisade-like epidermal cells on the outer surface. The three partially united petals have each a single vein and long, narrow epidermal cells similar to those on other floral organs. The stamens are united at their bases and bear tetra-sporangiate, conical anthers. The gynoecium includes a sterile and a fertile carpel. In the receptacle the veins to the sepals and petals are separated by a wide gap; those to the petals and stamens, by a narrow gap. Anatomical characteristics of the flower dissociate Krameriaceae from the legumes with which they have frequently been thought to be allied.  相似文献   

9.
The androecium of the Caryophyllaceae is varied, ranging from a two-whorled condition to a single stamen. A number of species belonging to the three subfamilies, Caryophyl-loideae, Alsinoideae and Paronychioideae have been studied ontogenetically with the SEM to understand their peculiar androecial development in the broader context of the Caryophyllales alliance. Although patterns of initiation are highly variable among species, there are three ontogenetic modes of stamen initiation: all stamens simultaneous within a whorl, the antepetalous stamens simultaneous and the antesepalous sequentially with a reversed direction, or both whorls sequentially with or without a reversed direction. The most common floral (ontogenetic) sequence of the Caryophyllaceae runs as follows: five sepals (in a 2/5 sequence), the stamens in front of the three inner sepals successively, stamens opposite the two outermost sepals, five antepetalous stamens (simultaneously or in a reversed spiral superimposed on the spiral of the antesepalous stamens), five outer sterile (petaloid) organs arising before, simultaneously or after the antesepalous stamens, often by the division of common primordia. A comparison with the floral configurations of the Phytolaccaceae and Molluginaceae indicates that the outer petaline whorl of the Caryophyllaceae corresponds positionally to the alternisepalous stamens of somePhytolacca, such asP. dodecandra. The difference withP. dodecandra lies in the fact that an extra inner or outer whorl is formed in the Caryophyl-laceae, in alternation with the sepals. A comparable arrangement exists in the Molluginaceae, though the initiation of stamens is centrifugal. A comparison of floral ontogenies and the presence of reduction series in the Caryophyllaceae support the idea that the pentamerous arrangement is derived from a trimerous prototype. Petals correspond to sterillized stamens and are comparable to two stamen pairs opposite the outer sepals and a single stamen alternating with the third and fifth sepals. Petals are often in a state of reduction; they may be confused with staminodes and they often arise from common stamenpetal primordia. The antesepalous stamen whorl represents an amalgamation of two whorls: initiation is reversed with the stamens opposite the fourth and fifth formed sepals arising before the other, while the stamens opposite the first and second formed sepals are frequently reduced or lost. Reductive trends are correlated with the mode of initiation of the androecium, as well as changes in the number of carpels, and affect the antesepalous and antepetalous whorls in different proportions. It is concluded that the androecium of the Caryophyllaceae is pseudodiplos-temonous and is not comparable to diplostemonous forms in the Dilleniidae and Rosidae. The basic floral formula of Caryophyllaceae is as follows: sepals 5—petals 5 (sterile stamens)—antesepalous stamens 3+2—antepetalous stamens 5 gynoecium 5.  相似文献   

10.
通过不育细胞质为选择背景,在田间事先鉴定出杂种后代的优异完全不育株,用花药培养或诱导孤雌生殖使其纯合,测定其配合力,可以筛选到优良的目标不育系。以下3种方法则可能通过目标不育系而获得其同型保持系:一是通过体细胞变异(花药培养)产生;二是在不育系孕穗期高温或低温处理使其转换成可育,选择仍具有不育保持能力的作为保持系,或作为轮回亲本,将其细胞核换到可育细胞质中;三是用原生质体融合的方式向不育系导入已杀死细胞核的可育细胞质而获得配套保持系。它可以使杂种优势利用变得有预见性,可能提高现有杂种优势水平。在创造雄性不育新质源,排除微效可育基因,进行不育系的定向改造,选育高配合力不育系,以及加速育种进程等方面具有重要价值。  相似文献   

11.
We describe a novel mutant of Arabidopsis, Flo10, which is the result of a recessive allele, flo10, in the nuclear gene FLO10. The first three organ whorls (sepals, petals, and stamens) of Flo10 flowers are normal, but the fourth, gynoecial whorl is replaced by two to eight stamens or stamen-carpel intermediate organs. Studies of ontogeny suggest that the position of the first six of these fourth-whorl organs often resembles that of the wild-type third-whorl organs. To determine the interaction of the FLO10 gene with the floral organ homeotic genes APETALA2 (AP2), PISTILLATA (PI), AP3, and AGAMOUS (AG), we generated lines homozygous for flo10 and heterozygous or homozygous for a recessive allele of the homeotic genes. On the basis of our data, we suggest that FLO10 functions to prevent the expression of the AP3/PI developmental pathway in the gynoecial (fourth) whorl.  相似文献   

12.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

13.
Floral development was compared among three taxa in caesalpinioid tribe Detarieae sensu lato: Amherstia nobilis and Tamarindus indica have racemose, helically arranged inflorescences, while Brownea latifolia has cauliflorous capitate flower clusters that arise as racemes. All have acropetal flower order; initiation and development are sequential in all except Brownea, which is synchronous. All have paired persistent showy bracteoles. Floral symmetry is dorsiventral (zygomorphic) in all except Brownea, with radial symmetry at anthesis. Sepals initiate helically on a circular floral apex, starting with a median abaxial sepal, in all. Petals are initiated helically in Brownea, and unidirectionally in Amherstia and Tamarindus. Stamens are initiated unidirectionally in each stamen whorl in all except Amherstia, in which the outer whorl is bidirectional. The carpel initiates concurrently with the petals in Brownea, and with the outer stamens in the other taxa. The two upper (adaxial) sepal primordia become fused during development in all, so that the calyx appears tetramerous. Some reduced petals occur in Amherstia and Tamarindus, and some reduced stamens occur in all. All produce a hypanthium by zonal growth, and all except Tamarindus have the gynoecium attached adaxially to the hypanthial rim.  相似文献   

14.
15.
This study deals specifically with floral organogenesis and the development of the inflorescence of Philodendron squamiferum and P. pedatum. Pistillate flowers are initiated on the lower portion of the inflorescence and staminate flowers are initiated on the distal portion. An intermediate zone consisting of sterile male flowers and atypical bisexual flowers with fused or free carpels and staminodes is also present. This zone is located between the sterile male and female floral zones. In general, the portion of bisexual flowers facing the male zone forms staminodes, and the portion facing the female zone develops an incomplete gynoecium with few carpels. The incomplete separation of some staminodes from the gynoecial portion of the whorl shows that they belong to the same whorl as the carpels. There are two levels of aberrant floral structures in Philodendron: The first one is represented by the presence of atypical bisexual flowers, which are intermediates between typical female flowers and typical sterile male flowers. The second one is the presence of intermediate structures between typical carpels and typical staminodes on a single atypical bisexual flower. The atypical bisexual flowers of P. squamiferum and P. pedatum are believed to be a case of homeosis where carpels have been replaced by sterile stamens on the same whorl. A quantitative analysis indicates that in both species, on average, one staminode replaces one carpel.  相似文献   

16.
曹墨菊  荣廷昭  朱英国 《遗传》2005,27(5):747-752
利用3对线粒体引物对玉米同核异质和同质异核不育系的基因组总DNA进行PCR扩增;对检测到多态性的引物,再分别对供试材料小孢子发育至四分体、单核期和双核期的花药总RNA进行差异显示分析。结果表明:以基因组总DNA为模板,引物P1-P2在所有供试不育材料都有一相同的特异扩增带,而在保持系中均无扩增;引物P3-P4在所有供试材料中均无扩增;引物P5-P6仅在保持系黄早四中有扩增,而在其他供试材料中无扩增。这一结果说明以P1-P2为引物所检测到的特异扩增带为所有供试不育细胞质所特有,且不受供试材料不同核背景的影响。对于在不育材料基因组总DNA中具有特异扩增的引物P1-P2,进一步以cDNA为模板进行PCR扩增(RT-PCR),所有不育材料在小孢子发育的3个时期均有一相同的特异扩增带,而保持系在小孢子发育的相应时期均无扩增,说明以P1-P2为引物所检测到的转录本的大小和数目,在同核异质及同质异核不育材料间均表现一致,且不受小孢子发育时期的影响。这说明以P1-P2为引物所检测到的不育材料DNA水平的共同结构特点在小孢子发育中具有转录上的一致性,因此可以认为供试不育细胞质DNA水平的这一特异序列结构与雄性不育性状的表现有关。  相似文献   

17.
Three pairs of isonuclear lines of cytoplasmic male sterile (CMS) and fertile Petunia cells (Petunia hybrida [Hook] Vilm. and Petunia parodii L.S.M.) grown in suspension culture were examined for sensitivity to inhibitors of respiratory electron transport at time-points after transfer into fresh media. Cells from CMS lines differed from cells of fertile lines in their utilization of the cyanide-insensitive oxidase pathway. Under our culture regime, after approximately 3 days of culture cells from the CMS lines exhibited much lower cyanide-insensitive, salicylhydroxamic acid-sensitive respiration than cells from the fertile lines. This respiratory difference was shown to be specific to the mitochondrial alternative oxidase pathway by using other characteristic inhibitors of mitochondrial electron transport in experiments with isolated mitochondria. Immature anthers from CMS plants also showed lower alternative oxidase activity relative to anthers from male fertile plants, but no such difference was detected in leaf tissue, ovary or perianth tissue, or anthers collected just prior to anthesis. A cell line from a fertile plant carrying a nuclear fertility restorer gene and the CMS cytoplasm exhibited increased activity of the alternative pathway compared with the CMS lines.  相似文献   

18.
Genetic separation of third and fourth whorl functions of AGAMOUS.   总被引:13,自引:2,他引:11       下载免费PDF全文
AGAMOUS (AG) is an Arabidopsis MADS box gene required for normal development of the third and fourth whorls of the flower. In previously described ag mutants, the third whorl stamens are replaced by petals, and the fourth whorl is replaced by another (mutant) flower. We describe two new ag alleles, ag-4 and AG-Met205, retaining partial AG activity. Both produce flowers with stamens in the third whorl and indeterminate floral meristems; however, ag-4 flowers contain sepals in the fourth whorl, and AG-Met205 produces carpels. The ag-4 mutation results in partial loss of the C terminus of the K domain, a putative coiled coil, and AG-Met205 contains a site-directed mutation that causes a single amino acid change in this same region of the K box. Two models that might explain how these changes in AG result in the separation of different AG activities are discussed.  相似文献   

19.
用等电聚焦电泳分析的方法,测定了小麦(Triticum aestivum )3 种细胞质雄性不育类型(A 型、E型、T型)及其相应同核保持系萌动胚及幼芽可溶性蛋白. 发现雄性可育系等电点(pI)为4.90 的蛋白质合成数量高于相应的不育系;pI为6.85 的蛋白质可能是T 型细胞质基因表达的结果;pI为7.6 的蛋白质可能为津丰A 不育系特有的区带.表明细胞质来源不同的不育类型,其萌动胚及幼芽可溶性蛋白等电聚焦电泳图谱差异明显,有可能作为鉴别它们的依据  相似文献   

20.
Heritability of stamen fertility—different scores were given to sterile stamens developed to different degrees as well as to fertile stamens with one or two pollen sacs—was studied in Scleranthus annuus (Caryophyllaceae), a selling annual that shows extensive phenotypic variation in stamen fertility. Variation within and among 172 maternal families, derived from plants representing 20 natural populations from southern Sweden, was used to estimate heritabilities of stamen fertility for stamens/staminoids at each of the ten stamen positions in the flower. The hierarchical design of the study allowed partitioning of variation at four levels of organization using nested analysis of variance. Heritabilities ranged from 0.631 to 0.714 for stamen positions in the outer whorl of stamens and from 0.235 to 0.555 for positions in the inner whorl. When stamen fertility was pooled across all stamen positions of a flower, the heritability was 0.807. The nested ANOVA indicated that stamen positions in the outer whorl have comparatively higher proportions of among-family and among-population variation than those in the inner whorl. Furthermore, highly significant genetic correlations exist among stamen positions within the inner whorl and among positions within the outer whorl, but not so between positions from each of the two whorls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号