首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
选择山羊9细胞期到桑椹胚期的正常胚胎或重构胚的卵裂球,或选择胚泡期胚胎的内细胞团细胞作为供核,并以LRH注射后26-28h的去核成熟卵球作为受体,制备重构胚或再重构胚,琼脂糖包埋,植入山羊输卵管内,体内培养4-6天发育结果表明:不同发育时期(8细胞期至胚泡期)的正常胚胎细胞核或重构胚细胞核中,至少有部分细胞核均保留着发育的全能性;这些细胞核在母系基因表达产物的调控下,实现=重新编程,启动并完成正常  相似文献   

2.
体细胞来源及培养代数对核移植重构胚发育的影响   总被引:2,自引:0,他引:2  
为探讨体细胞来源及培养代数对核移植重构胚发育的影响,实验采用电融合法将小鼠2—细胞胚胎卵裂球、胚胎干细胞(ES)、胎儿成纤维细胞、耳成纤维细胞、尾尖成纤维细胞、睾丸支持细胞和精原细胞以及不同培养代次的胎儿成纤维细胞进行了核移植。结果显示:2—细胞胚胎卵裂球供核重构胚发育最好,囊胚率为7.4%;ES细胞重构胚虽然发育率低,但仍有囊胚出现,比例为0.7%;胎儿成纤维细胞重构胚最高发育阶段为桑椹胚,比例为0.2%;精原细胞重构胚只能发育到8-细胞阶段,比例为0.3%;其他几类细胞重构胚则仅能发育至4-细胞阶段。不同培养代数的胎儿成纤维细胞重构胚除第3代外都可发育到8-细胞阶段,且发育率差异不显著,但第一代细胞重构胚2-细胞发育率(40.7%)显著低于2、3和4代细胞重构胚。结果表明:不同分化程度的细胞核移植后,重新编程的难易程度是不一样的,分化程度越高则重新编程越难;未调整细胞周期的ES细胞由于多数处于S期,所以重构胚发育率很低;体外培养传代有利于体细胞核移植后重新编程。  相似文献   

3.
为了提高异种间核移植重构胚的发育率,本研究以体内排放的奶山羊成熟卵为供胞质的受体细胞,以人、兔、波尔山羊等的异种或亚种体细胞的原代核移植(Primary Somatic Cell Nuclear Transfer,PSCNT)重构早胚(8-16细胞期)的卵裂球作供核体,观察经亚种或异种卵胞质体短期“修饰”的核再移植产生的继代(Secondary SCNT,SSCNT)重构胚的着床前发育潜能。结果:人、兔、波尔山羊的继代桑椹/囊胚发育率均显著地高于其PSCNT胚胎(人,14.81%VS.7.79%;兔,23.53%VS.12.50%;波尔羊,55.35%VS.24.53%);这些早胚的各阶段发育时程仍遵循供核体动物正常受精卵的发育时程。结果启示:奶山羊成熟卵胞质对异种体细胞核亦具一定的去分化能力,能支持重构胚发育到囊胚;异种重构胚的发育特征是由供体核所决定的;继代核移植几乎能够成倍提高异种间重构胚的着床前发育率,提示核的去分化完全是在母型信息主导的调控之下完成的,而进一步发育的时序似乎是由核决定的:成倍延长在含母型信息主导调控环境中的时间能成倍提高SCNT重构胚的着床前发育率。  相似文献   

4.
共培养体系在牛核移植胚体外发育培养中的应用   总被引:3,自引:0,他引:3  
采用电融合法构建牛体细胞核移植重构胚,分析共培养细胞类型、传代次数、细胞冻-融以及蛋白质添加物(BFF和FBS)对牛体细胞核移植胚体外发育的影响,探讨胚胎体外共培养的条件,以建立优化的共培养体系。结果表明与非共培养组相比,共培养组重构胚的囊胚发育率以及胚胎细胞数显著增加(P<0.05),而输卵管上皮细胞共培养组同颗粒细胞共培养组相比胚胎细胞数显著增加(P<0.05),更适合做共培养细胞;随着共培养细胞传代次数的增加重构胚囊胚发育率及胚胎细胞数显著下降(P<0.05),共培养细胞在冷冻处理后重构胚的囊胚率和胚胎细胞数都显著下降(P<0.05);BFF较FBS更能促进牛核移植胚的囊胚发育率(P<0.05)。表明应用新鲜原代输卵管上皮细胞进行牛核移植胚胎的共培养,并在SOFaa添加10?F能够有效促进核移植胚胎的体外发育。  相似文献   

5.
研究去核山羊(Capra hircus)体内成熟的M II期卵母细胞与异种成年的哺乳动物(包括山羊、波尔山羊、牛、塔尔羊、熊猫)及人的成纤维细胞融合形成的体细胞核移植胚胎着床前的发育能力。结果显示这些异种体细胞核移植重构胚可以完成着床前发育, 并形成囊胚。种内体细胞核移植胚的融合率和囊胚发育率分别为78.67%(557/708)和56.29%(264/469); 亚种间或种间体细胞核移植胚的融合率和囊胚发育率分别为: 波尔山羊78.18%(541/692)、33.90%(40/118), 牛70.53%(146/207)、22.52%(25/111), 塔尔羊53.51%(61/114)、5.26%(3/570), 熊猫79.82%(1159/1452)、8.35%(75/898), 人68.76%(317/461)、5.41%(16/296)。由此结果得出以下结论: (1)山羊M II期卵母细胞胞质与供核细胞之间的亲缘性不影响两者的融合率; (2)山羊M II期卵母细胞的胞质能支持异种间体细胞核移植胚的着床前发育; (3)亲缘关系近的种间核移植胚的囊胚发育率高于亲缘关系远的种间核移植胚的。  相似文献   

6.
研究去核山羊(Capra hircus)体内成熟的M II期卵母细胞与异种成年的哺乳动物(包括山羊、波尔山羊、牛、塔尔羊、熊猫)及人的成纤维细胞融合形成的体细胞核移植胚胎着床前的发育能力。结果显示这些异种体细胞核移植重构胚可以完成着床前发育, 并形成囊胚。种内体细胞核移植胚的融合率和囊胚发育率分别为78.67%(557/708)和56.29%(264/469); 亚种间或种间体细胞核移植胚的融合率和囊胚发育率分别为: 波尔山羊78.18%(541/692)、33.90%(40/118), 牛70.53%(146/207)、22.52%(25/111), 塔尔羊53.51%(61/114)、5.26%(3/570), 熊猫79.82%(1159/1452)、8.35%(75/898), 人68.76%(317/461)、5.41%(16/296)。由此结果得出以下结论: (1)山羊M II期卵母细胞胞质与供核细胞之间的亲缘性不影响两者的融合率; (2)山羊M II期卵母细胞的胞质能支持异种间体细胞核移植胚的着床前发育; (3)亲缘关系近的种间核移植胚的囊胚发育率高于亲缘关系远的种间核移植胚的。  相似文献   

7.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:1,自引:0,他引:1  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(p<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至GO或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44 h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电脉冲结合6-DMAP激活处理,体外培养6天,结果表明,卵母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33 h的卵母细胞为受体)(p<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚  相似文献   

8.
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚率达到11.7%,囊胚率为6.7%,显著高于成纤维细胞重构胚(P<0.05)。本文还研究了卵母细胞的采集方法、激活程序和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导G0/G1期,抽吸法/解剖法采集卵母细胞,体外培养33-44h,将卵丘细胞放至去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电脉冲结合6-DMAP激活处理,体外培养6d。研究表明,卵母细胞采集方法、激活液中细胞松驰素(CB)、激活程度并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33h的卵母细胞为受体)(P<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,体外能发育至囊胚。  相似文献   

9.
本实验用小鼠血液淋巴细胞为核供体进行了核移植研究。用淋巴细胞分离液(比重1.088)分离出小鼠血液中的淋巴细胞,直接用作核移植供体细胞,采用胞质内注射法成功构建的重构胚经常规培养2h后,SrCl_2激活处理6h,然后添加mM16培养液和小鼠输卵管上皮细胞饲养层共培养。把发育至早期囊胚阶段的重构胚转移至小鼠胎儿成纤维细胞饲养层上,添加ES细胞培养液继续培养。对孵化出的内细胞团进行消化,然后接种培养。结果显示,小鼠血液淋巴细胞可以支持体细胞核移植重构胚的发育,核移植重构胚2-细胞率41.03%(128/312),桑葚胚和囊胚发育率分别为9.29%(29/312),1.92%(6/312)。重构囊胚在小鼠胎儿成纤维细胞饲养层上分离出2个内细胞团,分离率为0.64%(2/312)。实验证实利用小鼠血液淋巴细胞进行体细胞核移植是可行的,可用于深入研究。  相似文献   

10.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:8,自引:0,他引:8  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(P<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至G0或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电泳冲结合6-DMAP激活处理,体外培养6天,结果表明,卵 母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33h的卵母细胞为受体)(P<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚。  相似文献   

11.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

12.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

13.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus, and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos. At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

14.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

15.
16.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

17.
Oct-4 expression in pluripotent cells of the rhesus monkey   总被引:2,自引:0,他引:2  
  相似文献   

18.
萨能奶山羊是著名的奶用山羊品种,波尔山羊则是世界著名的肉用山羊品种.为了研究波尔山羊体细胞在奶山羊卵母细胞中的去分化,我们将成年波尔山羊的颗粒细胞或耳皮肤成纤维细胞作为供核细胞(试验组),移入奶山羊中Ⅱ期的去核卵母细胞透明带下,经电融合和离子霉素与6-二甲基氨基嘌呤(6-DMAP)激活,直接移入同期发情奶山羊输卵管或经体内培养,将发育的重构胚移人同期发情羊子宫内.妊娠早期作B超诊断,确立妊娠的观察至足月.同时将奶山羊的35日龄胎儿成纤维细胞作供核细胞(对照组),按试验组同样方法处理,将重构胚直接移入同期发情的奶山羊输卵管内.结果试验组,波尔羊颗粒粒细胞与耳皮肤成纤维细胞的融合率分别为78.2%(115/147)、57.4%(116/202),重构胚卵裂率为85.8%(115/134),桑椹胚、囊胚的发育率38.8%(52/134),早期妊娠三头,分别于妊娠40、60、60日龄终止妊娠.对照组,融合率为89.5%(136/152),早期妊娠率为42.9%(6/14),四头受体足月分娩,产四头公羊羔,其中三头存活,一头分娩时死于肺不扩张,并体重过大,显示胎儿过大综合症.经基因型鉴定证实,这四头克隆羔羊均源于同一胎儿成纤维细胞系.以上结果表明,波尔羊体细胞核在奶山羊卵母细胞中能够去分化,并维持一定程度的发育.  相似文献   

19.
Leukemia inhibitory factor (LIF) is an essential factor for implantation and establishment of pregnancy. However, its role in the development of preimplantation embryos remains controversial. In this study, changes in preimplantation embryos were determined after microinjection of LIF antisense oligonucleotide at the two-pronucleus stage. Although no significant differences were found in the percentages between the untreated group and the 0.25-fmol-treated group, the 0.5- or 1.0-fmol-treated groups had significantly lower percentages of embryos developed to the morula or blastocyst stage and the 2.0-fmol-treated group had significantly lower percentages of embryos developed to the four-cell, morula, or blastocyst stage. No embryos developed to the four-cell stage in the 4.0-fmol-treated group. Moreover, there was a decreasing trend in the levels of LIF immunoactivity with the increasing amount of LIF antisense oligonucleotide injected. The diameter of blastocysts in the 2.0-fmol-treated group was significantly smaller than that in the untreated group. The blastocysts in this group had significantly lower numbers of blastomeres and cells in the inner cell mass (ICM) or trophectoderm (TE) and ICM:TE ratio. The 1.0- or 2.0-fmol-treated groups had significantly lower implantation rates than their corresponding control groups. In the 2.0-fmol groups with supplementing exogenous LIF, significantly lower percentages were also observed in the four-cell, morula, and blastocyst stages. However, blastocysts treated with 50 ng/ml LIF had a significantly higher percentage than those in the LIF gene-impaired group without LIF supplement. These results indicate that LIF is a critical factor for the normal development of embryos at the preimplantation stages.  相似文献   

20.
Eggs must be the major locus of reproductive aging in women, because donation of eggs from younger to middle-aged women abrogates the effects of age on fertility. Oxidative stress, mitochondrial dysfunction, and apoptosis are associated with senescence. To develop an animal model of egg senescence, we treated mouse zygotes with 175 microM H(2)O(2) that induced mitochondrial dysfunction and developmental arrest, followed by delayed cell death, consistent with apoptosis. We reconstructed zygotes with nuclei and cytoplasm from treated or untreated zygotes, then followed development and apoptotic cell death in the reconstituted embryos. Pronuclear exchange between untreated, normal zygotes served as nuclear transfer controls. Rates of cleavage and development to morula and blastocysts were significantly lower (P<0.01) in zygotes reconstituted from untreated pronuclei and H(2)O(2)-stressed cytoplasts than those of nuclear transfer controls. Instead, the arrested, reconstituted zygotes displayed TUNEL staining at a similar rate to that of H(2)O(2)-treated controls, suggesting that apoptotic potential could be transferred cytoplasmically. On the other hand, rates of cleavage and development to morula and blastocyst of the reconstituted zygotes, derived from stressed pronuclei and untreated cytoplasm, were significantly increased (P<0.05), compared to those of H(2)O(2)-treated, control zygotes, indicating that healthy cytoplasm could partly rescue pronuclei from oxidative stress. Although oxidation stressed both nuclei and cytoplasm, cytoplasm was more sensitive than nuclei to oxidative stress. It is suggested that cytoplasm, most likely mitochondria, plays a central role in mediating both development and apoptotic cell death induced by oxidative stress in mouse zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号