首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a PCR-based assay to quantify trichothecene-producing Fusarium based on primers derived from the trichodiene synthase gene (Tri5). The primers were tested against a range of fusarium head blight (FHB) (also known as scab) pathogens and found to amplify specifically a 260-bp product from 25 isolates belonging to six trichothecene-producing Fusarium species. Amounts of the trichothecene-producing Fusarium and the trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from a field trial designed to test the efficacies of the fungicides metconazole, azoxystrobin, and tebuconazole to control FHB were quantified. No correlation was found between FHB severity and DON in harvested grain, but a good correlation existed between the amount of trichothecene-producing Fusarium and DON present within grain. Azoxystrobin did not affect levels of trichothecene-producing Fusarium compared with those of untreated controls. Metconazole and tebuconazole significantly reduced the amount of trichothecene-producing Fusarium in harvested grain. We hypothesize that the fungicides affected the relationship between FHB severity and the amount of DON in harvested grain by altering the proportion of trichothecene-producing Fusarium within the FHB disease complex and not by altering the rate of DON production. The Tri5 quantitative PCR assay will aid research directed towards reducing amounts of trichothecene mycotoxins in food and animal feed.  相似文献   

2.
Phytopathogenic fungi such as Fusarium spp. synthesize trichothecene family phytotoxins. Although the type B trichothecene, deoxynivalenol (DON), is thought to be a virulence factor allowing infection of plants by their trichothecene-producing Fusarium spp., little is known about effects of trichothecenes on the defense response in host plants. Therefore, in this article, we investigated these effects of various trichothecenes in Fusarium-susceptible Arabidopsis thaliana. Necrotic lesions were observed in Arabidopsis leaves infiltrated by 1 microM type A trichothecenes such as T-2 toxin. Trichothecene-induced lesions exhibited dead cells, callose deposition, generation of hydrogen peroxide, and accumulation of salicylic acids. Moreover, infiltration by trichothecenes caused rapid and prolonged activation of two mitogen-activated protein kinases and induced expression of both PR-1 and PDF1.2 genes. Thus, type A trichothecenes trigger the cell death by activation of an elicitor-like signaling pathway in Arabidopsis. Although DON did not have such an activity even at 10 microM, translational inhibition by DON was observed at concentrations above 5 microM. These results suggested that DON is capable of inhibiting translation in Arabidopsis cells without induction of the elicitor-like signaling pathway.  相似文献   

3.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

4.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

5.
Identification of Fusarium species by traditional methods requires specific skill and experience and there is an increased interest for new molecular methods for identification and quantification of Fusarium from food and feed samples. Real-time PCR with probe technology (Taqman) can be used for the identification and quantification of several species of Fusarium from cereal grain samples. There are several critical steps that need to be considered when establishing a real-time PCR-based method for DNA quantification, including extraction of DNA from the samples. In this study, several DNA extraction methods were evaluated, including the DNeasy Plant Mini Spin Columns (Qiagen), the Bio robot EZ1 (Qiagen) with the DNeasy Blood and Tissue Kit (Qiagen), and the Fast-DNA Spin Kit for Soil (Qbiogene). Parameters such as DNA quality and stability, PCR inhibitors, and PCR efficiency were investigated. Our results showed that all methods gave good PCR efficiency (above 90%) and DNA stability whereas the DNeasy Plant Mini Spin Columns in combination with sonication gave the best results with respect to Fusarium DNA yield. The modified DNeasy Plant Mini Spin protocol was used to analyse 31 wheat samples for the presence of F. graminearum and F. culmorum. The DNA level of F. graminearum could be correlated to the level of DON (r(2) = 0.9) and ZEN (r(2) = 0.6) whereas no correlation was found between F. culmorum and DON/ZEA. This shows that F. graminearum and not F. culmorum, was the main producer of DON in Swedish wheat during 2006.  相似文献   

6.
Samples of wheat (n = 25) and maize (n = 30) for animal consumption, collected in 1997 after harvest from western Romania, were analyzed by enzyme immunoassays for mycotoxin contamination. Toxins analyses included deoxynivalenol (DON), 3-acetylDON, 15- acetylDON, fusarenone X (FX), T-2 Toxin (T-2), diacetoxyscirpenol (DAS), zearalenone (ZEA), fumonisin B1 (FB1), aflatoxin B1 (AFB1), ochratoxin A (OA), and citrinin (CT). DON and acetylDONs were the major contaminants in wheat (100%) and maize (46%). Median values for DON, 3-acetylDON, and 15-acetylDON were 880 μg kg-1, 66 μg kg- 1, and 150 μg kg-1 in wheat, and 890 μg kg-1, 180 μg kg-1, and 620 μg kg- 1 in maize, respectively. Additionally, 3,15-diacetylDON was detected in some samples by HPLC-EIA analysis. All samples were negative for FX (<150 μg kg-1). T-2 was found in wheat (n = 6) and maize (n = 1) at levels between 13 and 63 μg kg- 1. DAS (2.6 μg kg-1) was found in one maize sample. ZEA occurred in all wheat and in four maize samples, median values were 10 μg kg-1 and 250 μg kg-1, respectively. One maize sample contained FB1 (140 μg kg-1). All samples were AFB1-negative (<4 μg kg-1). OA was found in one wheat sample (37 μg kg- 1), CT was found in one maize sample (580 μg kg- 1). This first reported natural occurrence of a range of mycotoxins in Romanian feeding stuff shows that DON and acetyl DONs may be present at levels which may affect animal production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Rheological and breadmaking properties of untreated and suboptimally stored wheat samples (grain moisture: 20%, temperature: 20°C) and also of wheat which was inoculated withFusarium spp. were investigated. The deoxynivalenol (DON) content of the stored and inoculated wheat samples ranged between 820–12,000 μg/kg. Gluten proteins were isolated with different extraction solutions and the fractions obtained were analysed by means of RP-HPLC. Microextension tests and micro-baking tests were used for the determination of dough properties (maximum resistance (MR) and extensibility (EX)) and bread volume, respectively. In spite of the extremely high DON concentrations of some wheat samples contaminated withFusarium spp. they showed only a slight decrease of the amount of gluten proteins. Extension tests of dough led to a slight decrease of MR, bread volumes stayed almost the same compared with the non-contaminated grain. The contamination of wheat withAspergillus andPenicillium led to a high decrease of gluten proteins, which resulted in an extremely decreased MR of the dough and a very low bread volume.  相似文献   

8.
From 1999-2001 three different varieties of wheat [Contur (susceptible to Fusarium), Batis and Petrus (less susceptible to Fusarium)] were cultivated under organic and conventional conditions in order to determine mycotoxin burden. Soil quality, preceding crop and weather conditions were comparable in the different production systems. The wheat batches were analysed for moulds, and the contents of zearalenone (ZEN) and deoxynivalenol (DON). Feeding trials were carried out with growing pigs (n = 96; average initial live weight 22.2 +/- 1.5 kg [mean +/- SD]) to examine a possible influence on the animal performance and on mycotoxin residues. The data recorded were clinical conditions, performance, biochemical and hematological data. Residues of ZEN, alpha- and beta-zearalenol (ZEL) and of DON were determined in bile, liver and muscle after slaughtering. Conventionally cultivated wheat was more frequently contaminated with Fusarium and contained more frequently ZEN and DON in higher concentrations than the organically produced wheat. Hematological and biochemical parameters of pigs fed with organically cultivated diets were not different from those of conventionally fed pigs. Pigs fed with organically produced wheat showed a slightly higher daily weight gain, but a lower carcass yield than the conventionally fed animals. The highest residues of DON and total-ZEN (ZEN + alpha-ZEL + beta-ZEL) were found in bile. Bile samples of organically fed pigs contained lower concentrations of total-ZEN than those of conventionally fed pigs. Altogether, these data suggest that wheat from an organic farming does not have higher mycotoxin-contamination than wheat from the conventional farming system.  相似文献   

9.
The concentrations of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) of a heavily contaminated wheat grain batch were followed over a period of 1 year by taking samples 15 times every 28 days. The air temperature and relative humidity at the top of the wheat batch ranged between 7 and 22 degrees C and 44 and 55%, respectively, and corresponded to a variation in the moisture content of the wheat grain between 11.5 and 12.3%. None of these fluctuations were related to ZON and DON concentrations, which varied between 0.46 and 0.66 and 15.0 and 19.5 mg/kg DM. Therefore, the data were used to analyse the error sources for the analytical results. It was found that the variance proportions due to sampling and sample preparation plus analysis were not similar for DON and ZON. The variance proportion due to sampling was found to be 0.62 for ZON, which corresponded to a variance proportion of 0.38 due to sample preparation plus analysis. In contrast, the latter variance proportion for DON was estimated to be 1.0 and consequently completely superimposed the sampling error. It is concluded that long-term storage of contaminated wheat grain does not affect the concentrations of DON and ZON considering the measured fluctuations in ambient temperature, relative humidity and moisture content of the grain. Therefore, no degradation of DON and ZON occurred during the storage of wheat for a period of one year under ambient conditions. The effects of sampling and sample preparation plus analysis on the final analytical results are different for DON and ZON and require further consideration.  相似文献   

10.
Deoxynivalenol (DON) content and Fusarium spp. ( Fusarium graminearum , Fusarium culmorum , Fusarium avenaceum , Microdochium nivale and Fusarium poae ) of mycotoxin-producing Fusarium species in winter wheat in Belgium (Flanders) were determined. Field trials were set up in the varietal testing network of Flanders Agricultural Centre for Small Grains (Roeselare – Beitem, Belgium) and followed up during growing seasons 2001–2002, 2002–2003, 2003–2004 and 2004–2005. Fusarium infection and DON contamination were mainly influenced by location and environmental parameters. Mean DON levels ranged from 0 to 15 mg/kg. Over the period of four growing seasons cvs Deben, Ordeal and Napier had the highest DON contamination. Seasonal and local weather conditions before and during flowering together with local crop husbandry measures (crop rotation, soil preparation) seemed to be of great importance in explaining the variation in results obtained. At Bottelare a positive correlation between disease index and DON content was found for the growing seasons 2001–2002 and 2002–2003, but not the season 2003–2004. Fusarium graminearum and F. culmorum were in general the most frequently occurring Fusarium spp. in Flanders over the 4 years but the composition of the Fusarium population varied strongly from location to location and from year to year. Fusarium graminearum predominated in areas especially where maize was cultivated, whereas in areas with more small cereals in the crop rotation more F. culmorum was present. Also temperature played a role in the composition of Fusarium spp.  相似文献   

11.
AIMS: To develop a DNA microarray for easy and fast detection of trichothecene- and moniliformin-producing Fusarium species. METHOD AND RESULTS: A DNA microarray was developed for detection and identification of 14 trichothecene- and moniliformin-producing species of the fungal genus Fusarium. The array could also differentiate between four species groups. Capture probes were designed based on recent phylogenetic analyses of translation elongation factor-1 alpha (TEF-1alpha) sequences. Particular emphasis was put on designing capture probes corresponding to groups or species with particular mycotoxigenic synthetic abilities. A consensus PCR amplification of a part of the TEF-1alpha is followed by hybridization to the Fusarium chip and the results are visualized by a colorimetric Silverquant detection method. We validated the Fusarium chip against five naturally infected cereal samples for which we also have morphological and chemical data. The limit of detection was estimated to be less than 16 copies of genomic DNA in spiked commercial wheat flour. CONCLUSIONS: The current Fusarium chip proved to be a highly sensitive and fast microarray for detection and identification of Fusarium species. We postulate that the method also has potential for (semi-)quantification. SIGNIFICANCE AND IMPACT OF THE STUDY: The Fusarium chip may prove to be a very valuable tool for screening of cereal samples in the food and feed production chain, and may facilitate detection of new or introduced Fusarium spp.  相似文献   

12.
Development of deoxynivalenol (DON) in wheat with a low contamination withFusarium spp. was investigated under suboptimal storage conditions (17% and 20% grain moisture, 20°C). The influence of storage on the relative DNA content of potential DON producers was also determined. The DON contents were quantified using an ELISA. The Tox5 PCR was used for the detection of potential trichothecene producers and for the estimation of their relative DNA content. ThegaoA gene was subsequently amplified by PCR to detect specificallyFusarium graminearum. The concentration ofF. graminearum DNA was semiquantitatively determined using a Light Cycler?. The DON concentrations increased during storage trials but the intensity of PCR signals decreased.  相似文献   

13.
A time course study was made of the development of Fusarium infection and the appearance of the three Fusarium toxins, nivalenol (NV), deoxynivalenol (DON) and zearalenone (ZEN), in various fractions of maize plants from two sites in New Zealand, one in the Manawatu region and one in the Waikato. Fusarium infection was seen in leaf axil fractions in January, at the time of tassel emergence, and was detectable in stalks, leaf blades, rachis and peduncles during February and in kernels in April. NV, DON and ZEN were only detectable some time after infection was demonstrable. NV, in high concentrations relative to DON (up to 287 mg/kg for NV and up to 8 mg/kg for DON), was found in fractions from the Manawatu site where F. crookwellense and F. culmorum were the predominant toxigenic species. NV and DON at similar levels (up to 25 mg/kg) were found in fractions from the Waikato site at which F. graminearum and F. subglutinans predominated. Highest levels of NV and DON were in rachis and peduncle. ZEN was found most consistently in leaf axils and blades at both sites (up to 8 mg/kg at the Manawatu site and up to 75 mg/kg at the Waikato site) but at times there were high levels in rachis fractions (up to 417 mg/kg at the Manawatu site). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between 'CM-82036' and 'Remus' were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxin-treated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyl-transferase or regulates the expression of such an enzyme.  相似文献   

16.
The analysis of deoxynivalenol (DON) in naturally infected wheat samples, after having been separated into four fractions through laboratory sieves, showed very low levels of DON in the fraction of largest kernels >2.8 mm (0 up to 1 mg/kg). The highest concentration of DON was found in fractions 2.2 to 2.5 mm and <2.2mm with up to 14mg/kg and 15mg/kg DON, respectively. In two samples (fractions <2.2mm) nivalenol was detected in concentrations up to 1,4mg/kg.  相似文献   

17.
Effect of cleaning, milling, and baking on deoxynivalenol in wheat.   总被引:2,自引:1,他引:1       下载免费PDF全文
Samples of wheat naturally infected by Fusarium graminearum Schwabe were obtained from mills in Oklahoma, Missouri, Kansas, and Minnesota and fields in Nebraska and Kansas in 1982; they were analyzed for deoxynivalenol (DON). The wheat was milled, and DON was found throughout all the milling fractions (bran, shorts, reduction flour, and break flour). The DON recoveries for each mill run ranged from 90 to 98%. These samples, regardless of DON concentration, also gave similar fractional distributions of DON. The greatest (21 ppm [21 micrograms/g]) concentration of DON was found in the bran, and the smallest (1 ppm) was found in the break flour. Cleaning and milling were not effective in removing DON; DON was not destroyed in the bread baked from the naturally contaminated whole wheat flour, but the effect on its concentration in the samples analyzed varied, the reduction ranging from 19 to 69%. The percent reduction found in the cleaned wheat ranged from 6 to 19%. DON concentrations in the following commercially made breads, caraway rye, seedless rye, and pumpernickel, were 45 ppb (ng/g), 39 ppb, and 0 ppb, respectively. The limits of detection by gas chromatography-mass spectrometry and high-pressure liquid chromatography for DON were 0.5 and 10 ng, respectively.  相似文献   

18.
Samples of wheat naturally infected by Fusarium graminearum Schwabe were obtained from mills in Oklahoma, Missouri, Kansas, and Minnesota and fields in Nebraska and Kansas in 1982; they were analyzed for deoxynivalenol (DON). The wheat was milled, and DON was found throughout all the milling fractions (bran, shorts, reduction flour, and break flour). The DON recoveries for each mill run ranged from 90 to 98%. These samples, regardless of DON concentration, also gave similar fractional distributions of DON. The greatest (21 ppm [21 micrograms/g]) concentration of DON was found in the bran, and the smallest (1 ppm) was found in the break flour. Cleaning and milling were not effective in removing DON; DON was not destroyed in the bread baked from the naturally contaminated whole wheat flour, but the effect on its concentration in the samples analyzed varied, the reduction ranging from 19 to 69%. The percent reduction found in the cleaned wheat ranged from 6 to 19%. DON concentrations in the following commercially made breads, caraway rye, seedless rye, and pumpernickel, were 45 ppb (ng/g), 39 ppb, and 0 ppb, respectively. The limits of detection by gas chromatography-mass spectrometry and high-pressure liquid chromatography for DON were 0.5 and 10 ng, respectively.  相似文献   

19.
The Fusarium head blight (FHB)-susceptible winter wheat cv. Ritmo was inoculated with spores of Fusarium culmorum at the beginning of full blossom. Samples of whole wheat plants were taken once weekly from anthesis until harvest and subsequently fractionated into straw, glumes and spindles, which were examined for deoxynivalenol (DON) and zearalenone (ZON). Additionally, the content of crude protein (CP) and non-starch polysaccharides (NSP) was scrutinized. Synthesis of the Fusarium toxins DON and ZON generally differed in terms of date of formation and concentration. Final mean DON concentrations of 37.5, 28.1 and 5.0 mg/kg DM were measured in glumes, spindles and straw, respectively, at the time of harvest. At this time, maximal mean ZON concentrations of 587, 396 and 275 microg/kg DM in spindles, glumes and straw, respectively, were determined. Moreover, Fusarium infected wheat residues contained higher CP but lower NSP contents at the last three sampling dates. In addition, collective samples of wheat straw and chaff were taken to investigate the effect of the Fusarium contamination on their in sacco DM degradation in dairy cows. Samples were analysed for mycotoxins and selected quality parameters. The dried and milled collective samples of straw and chaff were weighed into nylon bags and subjected to ruminal incubation for 4, 8, 16, 24, 48, 72, 96 and 120 h in two dairy cows equipped with a permanent rumen cannula. Marked differences in level of mycotoxin contamination as well as in ingredient composition between the variants of straw and chaff were detected. Moreover, after 120 h rumen incubation the in sacco DM degradation of inoculated straw and chaff were lower compared to the accordant controls. The soluble fraction was increased in inoculated samples, whereas a diminishment in the potentially degradable but insoluble fraction was more pronounced. Thereby, a decrease in the potential degradability was obtained for inoculated straw and even if less pronounced for chaff compared to the non inoculated corresponding controls. In conclusion, infection with F. culmorum of wheat involves an increased risk of mycotoxin contamination in straw. Also, a Fusarium infection may have an impact on chemical composition and may result in Fusarium growth-related modifications of host cell wall components.  相似文献   

20.
J J Park  E B Smalley    F S Chu 《Applied microbiology》1996,62(5):1642-1648
Analysis of 98 moldy corn samples collected in Wisconsin between November 1992 and January 1993 for Fusarium toxins by various immunochemical assays revealed overall average mycotoxin concentrations of 305.6, 237.7, and 904.3 ng/g for type A trichothecenes (TCTCs), deoxynivalenol (DON)-related type B TCTCs (total DON), and zearalenone (ZE), respectively. A small portion (5.1%) of the samples was found to be contaminated with high levels ( > 1 microgram/g) of type A TCTCs and total DON during the whole survey. Over 40% of the samples had 100 to 1,000 ng of total DON per g, while 17% of the samples had the same levels of type A TCTCs. The analytical data were consistent with those from mycological examinations for the samples in which various toxic Fusarium spp., including F. sporotrichioides, F. poae, and F. graminearum, were found. The samples received in November 1992 had relatively low concentrations of toxin; the average levels of type A TCTCs and total DON were 9.9 and 79 ng/g, respectively. The toxin concentrations became progressively higher in the samples received in December. The average levels for the type A TCTCs and total DON increased to 920 and 335 ng/g, respectively. However, the levels of ZE were higher in the samples collected earlier. The average levels for samples collected in November and late December were 1,195 and 242 ng/g, respectively. Analysis of selected samples by high-performance liquid chromatography monitoring with an enzyme-linked immunosorbent assay revealed that T-2 toxin, HT-2 toxin, diacetoxyscirpenol, neosolaniol, and T-2 tetraol (T-2-4ol) were common in these samples. Statistical analysis revealed a weak correlation between the levels of total type A TCTCs and total DON in the samples (r = 0.18, P = 0.09), but a strong correlation between the levels of ZE and total type B TCTCs (r = 0.75, P < 0.0001) was found. The mycotoxin levels of total type A TCTCs, total DON-related type B TCTCs, and ZE in the cobs (5.2, 3.9, and 21 micrograms/g, respectively) were considerably higher than those in the kernels (1.0, 0.5, and 0.5 microgram/g, respectively). The type A toxin levels increased from a range of 14 to 35 ng/g to a range of 110 to 538 ng/g after the moldy corn samples were held at 5 degrees C for 8 days in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号